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Abstract 

Recently, a new variability ordering, called ri#ht spread orderino or excess wealth ordering has been introduced. This 
new ordering is weaker than dispersive ordering. We show in this note that if X is less variable than Y in the sense 
of right spread ordering or convex ordering, then it implies that IX1 - )(21 is less variable than I}'1 - Y21 according to 
increasing convex ordering. Here )(1 and )(2 (Y1 and I"2) are two independent copies o f X  (Y). An application of the right 
spread ordering in the study of spacings from an increasing mean residual life distribution is given. (~) 1997 Elsevier 
Science B.V. 
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I. Introduction 

Recently, Fernandez-Ponce et al. (1995) and independently, Shaked and Shanthikumar (1996) have intro- 
duced a new partial ordering called ri#ht spread orderino to compare two probability distributions in terms 
of  their variability. In this note we further study the properties of  this new ordering and develop some new 
connections among several variability orderings. First, we review some of  the definitions. 

Let X and Y be two random variables with distribution functions F and G and survival functions F and G, 
respectively. The random variables are not necessarily restricted to be positive valued. Let F -1 and G -1 be the 
right continuous inverses of  F and G, defined by F - l ( u ) =  sup{x:F(x)<<, u} and G - l ( u ) - - s u p { x : G ( x ) < ~ u } ,  
u E [0, 1]. Throughout this paper the term increasino is used for monotone nondecreasino and decreasiny for 
monotone nonincreasino. 
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Definition 1.1. X is said to be stochastically smaller than Y (denoted by X ~<stY) if 

E[~(X)]<~E[c~(Y)] for all increasing functions ~b:~-- -~ ,  (1.1) 

for which the expectations exist. 

Definition 1.2. X is said to be smaller than Y in the increasing convex order (denoted by X~<icxY) if 

E[~b(X)] ~<E[~b(Y)] for all increasing convex functions q~ : ~ ~ ~ ,  (1.2) 

for which the expectations exist. 

It is known (see Shaked and Shanthiknmar, 1994, Section 3.A) that X~<icxY if and only if 

f5 ~(u)du~< ~(u)du, (1.3) 

for all x for which the integrals exist. 

Definition 1.3. X is said to be smaller than Y in the convex order (denoted by X<~exY) if 

E[~b(X)] ~<E[~b(Y)] for all convex functions ~b : ~? ~ ~ ,  (1.4) 

for which the expectations exist. 

It is well known that X is smaller than Y in the usual convex order if and only if E[X] =E[Y] and (1.3) 
holds. 

disp 
Definition 1.4. X is less dispersed than Y (X ~ Y) if 

F - I ( v ) - F - I ( u ) < ~ G - I ( v )  - G-I(u), V0<u~<v<I.  (1.5) 

This means that the difference between any two quantiles of F is smaller than the difference between the 
corresponding quantiles of G. The above partial orderings of distributions have been extensively studied in 
the literature. See Shaked and Shanthikumar, 1994, Chs. 2 and 3 for details. 

disp 
Mufioz-Perez (1990) has shown that X ~< Y if and only if the random variable ( X - F - l ( u ) )  + is stochas- 

tically smaller than the random variable ( Y -  G - l ( u ) )  + for every u E (0, 1), where (Z) + = max{Z,0}. Based 
on this observation, Fernandez-Ponce et al. (1995) proposed the following new variability ordering, which 
they call as right spread ordering, 

RS 
Definition 1.5. X is less right spread out than Y (X ~< Y) if 

E [ ( X  - F-l(u)) +] < < . g [ ( r  - a-l(u))+], Vu ~ (0, 1), (1.6) 

provided the expectations exist. 
Or equivalently, if 

T(t)dt~< -- VuE (0, 1). (1.7) 
-i(u) 
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Since F - l ( u ) = i f - l ( 1  - u) and G - l ( u ) = G - l ( 1  - u), we see that 

Y ~< Y¢¢, _,~u)ff(t)dt~< (t)dt, VuE(0,1). 

The reason for calling this ordering as the rioht spread (RS) ordering is that the function E[(X - F - l ( u ) )  +] 
is known as the right spread function of X. Shaked and Shanthikumar (1996) call this ordering as the "excess 

ew 
wealth" ordering and write X ~< Y if (1.7) holds. 

It is clear from the definition of RS ordering that it is weaker than dispersive ordering. The RS ordering 
has some nice properties and these have been discussed in Fernandez-Ponce et al. (1995) and Shaked and 
Shanthikumar (1996). For example, it is location-free in the sense that 

RS RS 
X ~  Y ~ X + c < ~  Y for a n y c E ~ .  

RS 
Also X ~ Y implies var(X)~<var(Y) as well as E[[X1 -XzI]<~E[IY1 - Y2I], where X1 and ArE (YI and 

Y2) are two independent copies of X (Y). Note that one can express var(X)= 1E[IX1 -)(212]. This led us to 
consider whether the following holds: 

RS 
x r= lX, - X 2 [ ~ i c x [ Y 1  - -  Y2[. (1.8) 

We prove in this note that our conjecture (1.8) is, in fact, true. Another motivation for considering 
the above relationship is the following result on dispersive ordering (see Shaked and Shanthikumar, 1994, 
Theorem 2.B. 16). 

Theorem 1.1. Let X1 and X2 (Y1 and 112) be two independent copies of X (Y), then 

disp 
X <~ Y=>lX1-X21<~tlY~-Yul. (1.9) 

Note that dispersive ordering implies RS ordering while the usual stochastic order implies the increasing 
convex order, so that (1.8) seems natural compared to (1.9). 

We shall be assuming throughout this note that all the random variables under consideration have finite 
expectations. We prove the various results in this note assuming that the random variables are absolutely 
continuous although we feel that some of the results may continue to hold without this restriction. The main 
results of this note are presented in Section 2. In Section 3 we give an interesting application of the RS 
ordering in the study of spacings from increasing mean residual life (IMRL) distributions. 

2. The main results 

First, we show that two random variables are equivalent in terms of RS ordering if and only if either they 
are identically distributed or they differ by a location parameter. 

Theorem 2.1. X R=S Y C~ X st y + c for some real constant c. (2.1) 

Proof. Since the RS function is location-free, for any real e, 

X ~  Y + e ~ x R = S y .  
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Conversely, suppose that X RS y. That is, for all u E (0, 1), 

t )dt  = t)dt. 
--I(u) --I(u) 

(2.2) 

Since we are assuming that the random variables under consideration are absolutely continuous, it follows 
that the quantile functions F -1 and G -1 are differentiable. Differentiating both sides of (2.2) with respect to 
u and cancelling out the common factor (1 - u), we get 

F - l ( u ) = - ~ u G - l ( u  ) for all uE(0,1) .  

The solution of this differential equation leads to 

F - l ( u ) = G - l ( u ) + x o  for some real x0 and for all u in (0,1). (2.3) 

It is easy to see that (2.3) will hold if and only if F and G differ by a location parameter. Hence the result 
follows. [] 

To prove our conjecture (1.8), we shall need the following result on convex ordering which is also of 
independent interest. 

Lemma 2.1. Let the random variables X and Y be symmetric about the origin. Then 

X <~cxY Ce~ lXl <~icx[Y[. (2.4) 

Proof. Suppose that X ~< ¢x Y. Since the random variables X and Y are symmetric about the origin, the survival 
function of IX[ is 

~ x f ( x ) = 2 F ( x )  for x~>0, (2.5) 

and that of ]Y] is 

HiYl(X)=2G(x ) for x~>0. (2.6) 

It immediately follows from (2.5), (2.6) and (1.3) that X<~cxY implies ]X[~<icxlYI. 
Conversely, suppose that IX[ ~<icxlY[. That is, 

/x if(t)  dt ~< G(t)  dt, (2.7) 
X 

for x>~0. 
To prove that X<.c×Y, it remains to show that (2.7) holds for negative values of x also. Let x < 0 .  Then 

x = - y  for some y >0. Now 

/y F(t )  dt = F( t )  dt + dt + F( t )  dt 

/o /o ; = Y F ( - t ) d t  + i ( t ) d t  + i ( t ) d t  

(by a change of variables in the first integral) 
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// = [F(t) + F(t)]  dt + F(t)  dt 

F = y + if(t)  dt. 

Therefore, for y > 0, 

t)dt - t)dt 
Y 

= G(t) dt - F( t )  dt 

>/0 

by (2.7). This proves the required result. [] 

L e m a  2.2. Let X1 and X2 (Y1 and Y2) be two independent copies of X (g),  then 

331 

(2.8) 

X<.cxY~X1 - X2 ~<cxY1 - Y2 (2.9) 

IX, - x21 ~icxlYl  - Y21. (2.10) 

Proof. The proof of (2.9) follows by noting the closure of the convex ordering under convolution (see Shaked 
and Shanthikumar, 1994, Theorem 2.A.6(d)) and the fact that X ~< cx Y if and only if - X  ~< ~x- Y (see Shaked 
and Shanthikumar, 1994, Theorem 2.A.6(a)). 

Since )(1 - X2 and Y1 - Y2 are symmetric about the origin, the proof of (2.10) follows from the previous 
lemma. [] 

Shaked and Shanthikumar (1996) have studied the relationship between the RS ordering and the increasing 
convex ordering. Assuming that the left endpoints lx and lr of the supports of X and Y are finite and equal, 

RS 
they prove that X ~ Y =:~ X ~< icx Y. Such restrictions are needed because the increasing convex ordering does 
not own the location-free property whereas the right spread ordering does. Their proof is quite involved and 
lengthy based on geometric considerations. We give below an altemative short proof of the above result. 

Theorem 2.2. Let X and Y be two random variables with finite means and with 0 as the common left 
RS 

endpoint of their supports. I f  X <~ Y, then X~<icxY. 

Proof. Let F and G be the distribution functions of X and Y, respectively. Let RF(X ) -~ fx ~ -if(t)dt, RG(x)= 
f o~ -G(t)dt, fl(x)= R-~IRF(X) and ~(x) = G-1F(x). 

Note that 

if(x) G(ct(x)) (2.11 ) 
f l ' (x)-  -G(R_~IRF(X)) G(fl(x))" 
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Now 

RS 
X <~ YC:~Ry(x)<,.R6(G-1F(x)) for x>~0 

<=~RG1RF(X)>~G-IF(x) for x~>0 a s  RG 1 is nonincreasing 

¢~-G(fl(x))<~-G(~(x)) for x>>.O as G is nonincreasing 

¢~ __ G(~(x)_______~) >/1 for x/> 0 
G(fl(x ) ) 

¢=~ if(x)  ~> 1 for x~>0. (2.12) 

RS 
Integrating both sides of (2.12) with respect to x from 0 to y, we find that X ~< Y implies fl(y)>>, y+fl(O)>>, y, 

RS 
as f l (O)=R~IRF(O)=R~I(#F)>~R~I(#6)=O, since RG is nonincreasing and X ~ Y implies #y<..#6, where 
#F and #6 are the means of X and Y, respectively. 

RS 
Hence X ~< Y implies fl(y)>~y for y>~O. That is, RF(y)<~Ra(y), y>~O. Or, X~<i~xE [] 

We are now ready to prove (1.8). We do assume in the next theorem that the left endpoints of the supports 
of the random variables are finite, but they need not be equal. 

Theorem 2.3. Let X and Y be two random variables with finite means and with finite left endpoints o f  their 
supports. Then 

RS 
X < Y ~ X 1  -X2<<.cxY1 - Y2 

<=>IX1 - Xz ] ~ icx l Y1 - Y2l, 

where X1 and X2 (Y1 and Y2) are two independent copies o f  X (Y). 

Proof. Let lx and lr denote the finite left endpoints of the supports of X and Y, respectively. We can write 

and Y 1 -  Y 2 = Y ~ -  Y~, =x7 

where 

Xi* = Xi - lx and Y~* = Yi - l r, i = 1,2. 

Since RS ordering is shift invariant, 

RS RS y . .  
X < Y ¢:~X* < (2.13) 

Also note that the left endpoints of the supports of X* and Y* are equal to 0. The required result now follows 
from Theorem 2.2 and Lemma 2.2. [] 

3. Application 

Let X be a nonnegative random variable with finite mean and with mean residual life function # F ( t ) =  

E [ X -  t IX>t]  = ft ~ F(x)dx/-ff(t). We say that F has the increasin9 mean residual life (IMRL) property if 
#F(t) is nondecreasing in t~>0. 
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Let Y be another nonnegative random variable with mean residual life function /aG(t). We say that X is 
smaller than Y in the mean residual life order (X <<.~IY) if 

#F(t)<<,/~c(t) for all t. (3.1) 

Shaked and Shanthikumar (1996) have established the following relation between mean residual life ordering 
and RS ordering. 

Theorem 3.1. Let X and Y be nonnegative random variables with finite means and with 0 as the common 
RS 

left end point of their supports. I f  X <~m~lY and if either X or Y or both are IMRL, then X <~ Y. 

A variant of  this result is also given in Fernandez-Ponce et al. (1995). In this section we discuss an 
interesting application of the above result in the study of sample spacings. Let )(1 . . . . .  Xn be a random sample 
from a continuous distribution F and let X1 :n ~< "'" <~X, :n be the corresponding order statistics. The random 
variables  Di: n = X / :  n - S i - 1  :n, i = 1 . . . . .  n; Xo:n- 0; are called the sample spacings from the distribution F. 

Theorem 3.2. Let X1 . . . . .  Xn be a random sample from an absolutely cont&uous IMRL distribution F. Then 

RS 
Di:n ~ Di+l:n f o r  i = l , . . . , n -  1. (3.2) 

Proof. Kirmani (1996) has proved that if  F is IMRL, then each Di: n is IMRL and Di:n<~mrlDi+l:n for 
i --- 1 . . . . .  n - 1. The required proof then follows from Theorem 3.1. [] 

A consequence of this result is that var(Di:n)<~var(Di+l :n), for i =  1 . . . . .  n -  1, a result proved in Kirmani 
(1996) also. But (3.2) is a much stronger result. 
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Note added in proof 

After this manuscript had gone to the press, it was discovered that the Lemma l(a)  of Kirmani (1996) is 
incorrect. This may invalidate some of his other results in that paper and also Theorem 3.2 above. 


