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Abstract 

A composition theorem for functions obeying certain positive ordering is proved. The novelty of the present version is 
that unlike earlier results which assume both components of the composition to be distributions or survival functions, 
one of the components is allowed to be negative and unbounded. The theorem is applied to yield very simple proof of 
characterizations for failure rate orderings of distributions given recently by Cap6rafi (1988). We also use this composi- 
tion theorem to give a characterization of two distributions with ordered mean residual life functions. 

Key words: Likelihood ratio ordering; TP2 ordering; Failure rate ordering; Mean residual life ordering 

1. Introduction and summary 

Stochastic ordering of distributions has been an important  tool in the theory of reliability and statistical 
inference in general. One of the earlier definitions of stochastic ordering was given by Lehmann (1955): 
distribution function F2 is said to be stochastically larger than F1 if F2 (z)~< F1 (z) for every z, or equivalently, if 
ff2(z) ~> F1 (z) for every z, where ffl = 1 - F1 and if2 = 1 - F2 are corresponding survival funct ions .  If X1 and X2 
are random variables with distribution functions F1 and F2 respectively, then one of the basic properties of 
this ordering is that for every nondecreasing function 0, 

E[o(x~)] ~>E[o(xx)-I. 

In some cases a pair of distributions may satisfy a stronger condition called l ikelihood ratio ordering. 
Suppose distributions Fx and/72 possess densities f l  and f2 respectively. Then the condition required for 
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likelihood ratio ordering is given by 

f2(z) 
is nondecreasing in z. (1.1) A(z) 

Condition (1.1) is related to TP2 functions. A nonnegative measurable function h(x, y) is said to be TPz if 

h(xa,ya) h(xa, Y2) >/0 for every xl~<x2 and Yx ~<Y2. (1.2) 
h(x2, Y l )  h(x2, Y2) 

Let h(i, z) denote a probability density function J~(z) for i=  1, 2. Then the monotone likelihood ratio 
condition is clearly seen to be equivalent to the condition h is TP2 

Keilson and Sumita (1982) studied orderings which lie between likelihood ratio and stochastic ordering. 
These are defined by the condition 

:~(z) 
is monotone increasing in z (1.3) 

F,(z) 

and 

F~(z) 
is monotone increasing in z. (1.4) FI (z) 

Writing F(O, z) and F(0, z) for Fo(z) and Fo(z) respectively, for 0 = 1, 2, it follows that conditions (1.3) and (1.4) 
are equivalent to requiring F and ff to be TP2 functions. Later we will assume that 0 takes values in an open 
interval contained in R. 

Observe that condition (1.3) implies that for every z and 6 > 0, 

_:l(Z) 1> _:2(z) 
F 1 (z + 6) F 2 (z q- 6 ) '  

which in turn implies that for every z, 

fx(z) f2(z) (1.5) 
:,(z~) >" :2(z)" 

Conversely if (1.5) holds then 

d - d 
dz In El(z)>>,-- ~ In F2(z), 

so that (1.3) holds. Thus the ordering defined by (1.5) can be termed as failure rate fir) ordering. Condition 
(1.4) can be given a similar interpretation. It is easy to see that (1.4) is equivalent to 

_ _  f2(z) fx(z) << (1.6) 
Fa(z) ~2(z)" 

TO interpret the ratios in (1.6), imagine that Fx is the life distribution of a component. Given that the 
component has failed by time z, then the probability that it survives up to time z -  6 is approximately 6 times 
the ratio appearing on the left side of the inequality (1.6). The corresponding ordering can be termed as 
survival rate (sr) ordering. Keilson and Sumita (1982) show that the TP2 ordering implies fr as well as sr 
ordering and it is easy to see that each of these two imply stochastic ordering. In the following we will write 
X2 > fr XI, or  F 2 > fr F1, tO denote fr ordering. Similarly, )(2 >st X! will denote stochastic ordering, X2 >,r X1 
will denote sr ordering and X2 >~X1 will denote likelihood ratio ordering. 
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It is easy to verify that partial orderings discussed above are preserved under a common nondecreasing 
transformation. For  example, if 9 is nondecreasing and X2 >fr Xx then 9(X2) >erO(Xa). 

Two recent articles derive results related to the above partial orderings. Caprra~i (1988) derived several 
characterizations of fr and sr orderings and gave applications to computing asymptotic efficiency of rank 
tests. One of the features of the characterizations given by Caprrah is that they involve functions which are 
allowed to assume negative values. This feature widens the scope of applications of these orderings. 

Lynch et al. (1987) (LMP) extend the composition result of TP2 density functions to corresponding results 
for distribution functions and survival functions. From these generalizations it follows that the fr ordering is 
preserved under the operation of convolution with a common distribution having the increasing failure rate 
(IFR) property. As a result, if Fi dominates Gi in fr ordering for i=  1, 2 and if F2 and Gx are IFR, then Fx * F2 
dominates Ga * G2 in fr ordering. A similar preservation holds for sr ordering. 

In this paper we achieve two main goals: 
(1) We extend the results of L M P  concerning the composition of TP2 functions. LMP  assume both 

components of the composition are distribution or survival functions. We assume a more general first 
component; it may be unbounded or even assume negative values. 

(2) We obtain the characterizations of Caprra~t (1988) from our composition theorem as simple transparent 
corollaries, much shorter in proof than the lengthy Caprra~i proof. 

2. A preservation theorem 

As noted above we plan to use the TP2 techniques. However, due to the fact that we will be dealing with 
functions taking on negative values, many of the familiar results have to be extended to accommodate such 
functions. Fortunately, the tools needed for extensions to negative valued functions do hold. 

It is important  to take note of the difference between the statements one generally obtains when one is 
considering a pair of densities possessing the monotone likelihood ratio property where the pair is taken 
from a family of densities and the pair of functions we will be considering. In the case we deal with, the ratio is 
formed by functions, the numerator of which may take negative values while the denominator is assumed to 
be positive valued. Clearly for this case, the pair does not come from a family of density or distribution 
functions. What we use mainly is the TP2 like property given in relation (1.2). 

Definition. A pair of measurable real functions, (01, g2), is said to satisfy the DP2 condition if 
(i) 9a is nonnegative while 92 may take negative values. 

(ii) for every xx ~<x2, 

g I ( X 1 ) g 2 ( x 2 ) ~ g I ( x 2 ) g 2 ( x 1 ) .  

Here DP2 denotes the positivity of the second order determinant. 

Lemma 2.1. Suppose that a pair (ga, g2) satisfies the DP2 condition. Let (a, b) and (c, d) be a pair of intervals 
such that a <<. c and b <<, d. Then 

Proof, First assume that the intervals are disjoint. If for some x, both 9a and 02 take the value 0, then the 
contribution to both sides of (2.1) is 0. As a result we may assume that the set where both functions are 
simultaneously 0 has been removed. Now the DP2 condition implies that the ratio O2(x)/gx (x) is nondecreas- 
ing in x. This monotonicity together with the nonnegativity of 01 implies that either g2(x) has the same sign 
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for all x or there exists an x_ -%< x + such that g2 is negative for x < x_ and positive for x > x +. It also follows 
that the set {x: g l (x)>0} is an interval containing x_ and x+. 

From these observations the inequality (2.1) is seen to be trivially true if either 01 (b) or g i (c) is 0. Hence it 
will be assumed in the following that both of these numbers are positive. 

Due to the assumption of DP2, it follows that 

and 

gl(c)g2(x)>~gl(x)g2(c) for every x~(c,d), 

gl(b)g2(c) >- gl (c)g2 (b) 

gl(x)g2(b)>>-gl(b)g2(x ) for every xe(a, b). 

Hence using these inequalities in succession, it follows that 

Since gl(b)ga (c)> O, the desired inequality is established for the case of disjoint intervals. 
To see that it extends to the case of overlapping intervals, suppose c < b so that the inequality to be proved 

becomes 

Expanding the two sides and using the result for the disjoint intervals (a, c), (c,b), (b, d) the desired inequality 
follows. [] 
Remark. Lemma 2.1 points out that the DP2 notion leads to what is knowfi as a local property. If the pair of 
functions were positive then the local property would be equivalent to having the TP2 property for the 
measures generated by the pair of functions. 

The main use of Lemma 2.1 will be made in the following Corollary. 

Corollary 2.1. Suppose a pair of functions gl,g2 satisfies the DP 2 property, as in Lemma 2.1. Let ht be the 
function obtained by convolving gi with a uniform distribution; that is, 

hi(x)= f ovi(x-u)du. 
Then 

(i) the pair hi, h2 preserves the DP2 property. 
(ii) if gt is increasing (decreasing) so is hi. 
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Proof. Suppose x2 > x~. Then the functions h~ evaluated at these points are integrals of the functions g~ over 
the intervals which satisfy the conditions in Lemma 2.1. The assertion (i) now follows from Lemma 2.1. The 
assertion (ii) follows from the fact that the intervals over which integrals are taken are of the same length and 
that one interval lies to the right of the other. [] 

The motivation for considering the above result is that we may encounter functions which are discontinu- 
ous. Corollary 2.1 says that the smoothed version of the given functions will persist in having the DP2 
property so that we can establish the results for the smoothed versions and then extend those to the general 
functions by letting 0 go to 0. For this purpose the following result is useful. 

Lemma 2.2. Suppose g is a nonnegative increasing function, integrable with respect to measure I~, and let 

h(x; 0)=~ g ( x - u ) d u .  

Then the sequence 

f h(x;1/n)d#(x) T f g(x)d#(x), 
as n~oo on the positive integers. 

In the above if g is decreasing, then by redefining h(x; 0), where convolution with the uniform distribution on 
(-0, O) is used, it follows that monotone convergence of the sequence of integrals holds. 

Proof. It is clear that h(x; O) is bounded above by the integrable function g(x) for every 0. Further, for n > m, 
h(x; 1/n)>~h(x; 1/m) for every x so that by the monotone convergence theorem the first part of Lemma 2.2 
follows. The same argument holds for the case where g is decreasing. [] 

Theorem 2.1. Let (gl ,  g2) be a pair offunctions satisfying the DP2 property and the survival functions if(0, t) be 
TP2 in (0, t). Suppose that for i = 1, 2, 

fgi(t) dFo(t) exists and is finite. 

Further suppose that gl(t) is increasing in t. Then for i= 1, 2, 

h,(O) = f g,(t) dFo(t) 
is DP2, or equivalently, 

fg,(t)dFW)fg2(t)dF (t)>-fg,(t)dF2(t)fg (t)dFW). (2.2) 

Proof. Without loss of generality, 0 may be assumed to take values 1 and 2. Suppose F~ has density f~, and g~ 
possesses derivative g[ for i=  1, 2. Due to the assumption of monotonicity of gl,  the derivative g[ will be 
nonnegative. Note that the assumed TP2 property for/Y(0, t) implies that the family of distribution functions 
F(O, .) is stochastically ordered with respect to 0. 

To prove the theorem we have to verify that 

D= Sgl( t ) f l ( t )d t  Sg2(t) f l ( t )dt]~ n 
]~gl(t)f2(t)dt ~g2(t)f2(t)dtl ~v" 
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Using the basic composition formula the above relation can be rewritten as 

D=~' I ' / /  g , (s )  gl(t) f l(s) f2(s)  . . 
33 ,<t lg2(s) gz(t) f l( t)  f2( t )as t i r .  

When the above determinants are expanded one gets four terms. When each term is integrated by parts with 
respect to t, where - / ~  is used as the integral of f~, two terms arise. For  example, 

f/ gl(s)fl(s) gE(t)f2(t)dt=gt(s)fl(s)[-g2(t)ffE(t)12 + I 2  gi(t)F2(t)dt] 

= g 1 (s) A (s) [g 2 (s) F2 (s) + ~ ~ g '2 (0 F2 (t) dt].  

The determinant formed by the first terms is easily seen to be 0 while the one formed by the second terms 
yields 

O = ~  gl(s)g'~(t)fx_(s)f2__(s) dsdt. 
3L  ,<, gz(s) g'2(t) Fa(t) Fz(t) 

To show that the first determinant is nonnegative, note that the DP2 property for the g functions implies that 
for every 6 > 0 

ol(x)[02(x)- o2(x- a)] i> o2(x) [ol(x)- Ox(X- a)], 

and hence, 

Ox(X)0~(x) t> 02(x) 0'1(x). 

Since gl is nonnegative, the above inequality implies 

t ~ t 01 (t)g'2 (001 (s)/> 02 (t)O 1 (t)gx (s) ~ g2 (s)g 1 (t)g 1 (t), 

where the last inequality follows from the DPz property and the nonnegativity of 9'1. 

Since the P functions are TP2, a property stronger than DP2, the nonnegativity of the second determinant 
follows easily by a similar argument. This completes the proof of the result when the g functions and F are 
assumed to be differentiable. 

Suppose now that the gi are not continuous. By Lemma 2.1, it follows that the function gl can be replaced 
by a smoothed version which satisfies the conditions of the theorem and then using Lemma 2.2 the required 
inequalities can be established by taking limits. 

In order to replace 02 by a smooth version, first notice that the function 91 is nondecreasing, so that the set 
where g i is 0 of the form (---~ l). Further the assumption regarding the monotonicity of the ratio 02 (x)/gl (x) 
implies that g2 has to be nonpositive on this set. Consequently, on the set where 91 is 0, the contribution to 
the left side 0f(2.2) is 0 while the right side is nonpositive. Thus the right side 0f(2.2) is increased by making g2 
equal to 0 whenever 91 is 0. Since the set where both are 0 can be ignored, we may assume that the ratio 
g2(x)/gl(x) is well defined everywhere. 

Let ga(x)-g2(x)/gl(x) .  According to the assumption of the theorem, g3 is monotone increasing. As seen 
earlier, there exists an Xo, such that g3 is nonpositive for x ~< Xo and nonnegative for x 1> Xo. Considering the 
positive and negative parts of g3 it follows that one can find smoothed versions which are bounded above by 
these parts. Since gl is nonnegative multiplying these by gx we get a smoothed version of g2. By an argument 
similar to the one used in Lemma 2.2, the convergence of the integrals will lead to the required result for 
discontinuous functions 92. 

The proof of the preservation theorem is now complete. [] 
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Remark. In the above theorem if F is assumed to have the TP2 property rather than F, analogous results 
may be obtained for nonincreasing functions. 

3. Characterizations of FR and SR orderings 

Recently Cap6ra/t (1988) derived four characterizations offr and sr orderings. It will be shown below that these 
characterizations follow easily from Theorem 3.1. From the paper by Cap&a~t (1988) it seems that condition (d) 
below is very useful in applications. Since the treatment of sr ordering is very similar we present the results only for 
fr. As before it is assumed that the random variables Xi have distribution functions F~ for i=  1, 2. 

Theorem 3.1 (Cap6ra~). The following conditions are equivalent. 

(a) F2 >frF~. 
(b) For a pair of nondecreasing functions a and b, where b is nonnegative, if E[a(X1)b(XI)]=O, then 

E[a(X2)b(X2) ] >10. 
(c) For every nonnegative nondecreasing function b, with finite expectations E[b(Xl)] and E[b(X2)], the 

distribution function H2( ' ,  b) is stochastically larger than Hi ( ' ,  b) where 

Hi(x, b)= sx°° b(u)dFi(u) 
EEb(X,] 

is a weighted distribution corresponding to Fi with weight function b for i = 1, 2. 
(d) Suppose ~t and fl are functions having finite expected values under F1 and F2. Further suppose that fl is 

nonnegative and ct/fl and fl are nondecreasing. Then 

J'-~o o~(x)dF2(x)/> ~ (x) 
oo X j'_~,8()dF~(x) Loo,a(x)dF~(x)" 

ProoL To show that (a) implies (d), suppose that the functions a and fl satisfy the monotonicity conditions 
stated in (d). Define gl(t)=fl(t) and g2(t)=~(t). Then from the assumptions, the pair gl,g2 is DP2. Let 
F(2, t )= if2 (t) and F(1, t)=/~1 (t). Then the conditions of Theorem 2.1 are met and the resulting pair hi, h2 is 
DP2. This however is equivalent to the desired inequality. 

To show the converse, suppose (d) holds and define 

x<~tl x ~ t 2 ,  

where tl < t2.  Then 

(t2 ) 
and hence F 2 > fr FI. 

To show that (d) implies (c), we choose fl(x) = b(x) and ~(x) = b(x)ltt, oo~(x), where I is the indicator function. 
When the ratio in (d) is formed with this choice of integrands and the integrations are carried out with respect 
to the measures defined by F1 and F2, the inequality is equivalent to the one leading to the stochastic 
ordering. 

The assertion that (c) implies (a) is proved easily (as pointed out by Cap6ra~i (1988)) by taking b to be an 
indicator function of x > p, and then observing that the stochastic ordering of the resulting distributions is 
equivalent to the monotonicity of the ratio of the survival functions. 
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The proof that (b) implies (d) is quite simple and is given by Cap&aft (1988). We give it here for 
completeness. Define 

e -  J~oo o~(x)dF2(x) 
- IY~/~(x)dF2 (x)" 

Then the inequality in (d) is equivalent to 

f ?~o (ot(x) - efl(x) )dF, (x) >>. O. (3. 1) 

Choose functions a and b in (b) as follows. Let 

~(x) 
a(x) = - f l~ - e 

and let b(x) be fl(x). Then it is clear that E [a(Xl)b(X1 )] = 0. Hence (3.1) follows from (b) and hence (d) holds. 
Finally, to show that (d) implies (b), suppose E [a(X1)b(X1)] = 0, where a is a nondecreasing function and 

b is a nonnegative nondecreasing function. Choose fl(x)= b(x) and ct(x)=a(x)b(x). Then 0t and fl satisfy the 
conditions in (d). However, in this case the right side of the inequality in (d) is 0 due to the assumed condition 
on X1. Thus the inequality in (d) implies that 

?ooOt(X) dF2(x) >/0, (3.2) 

and hence E[a(X2)b(X2)-] i>0, where X 2 has distribution function F 2. This completes the proof of The- 
orem 3.1. [] 

Remark. The inequality in (d) above was proved by Bickel and Lehmann (1975) under the more stringent 
condition of monotone likelihood ratio. 

4. Application to MRL ordering 

Let 

Ix F~(u) du 
~,(x)= ,e,(x) 

denote the mean residual life (mrl) function of F~, the distribution of a non-negative random variable, i = 1, 2. 
Let/~ be the expected value corresponding to Fi. We say that Fz is larger than F1 in mrl ordering (F2 >~,l F1), if 

#F,(X)<~I~F2(X) for every x. (4.1) 

Let 

/7,(x) = I~°/~(u) du.  (4.2) 
#i 

Then inequality (4.1) is equivalent to 

d~ d log H2(x)~> dxx log Hi(x) for every x. 
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Consequently, the mrl ordering is equivalent to 

//2(x) 
is increasing in x. gl(x) 

These H functions are called the equilibrium survival functions. Apart from a normalizing constant #~, relation 
(4.2) reveals that ~ plays the role of density function. From this consideration and from the discussion in 
Section 1 it follows that 

F2 > f r F 1  :=~ F 2 >mr lF1  • 

Since we are dealing with nonnegative random variables, the integrals in (d) of Theorem 3.1 are taken over 
0 to oa Using condition (d) with this restriction on the H functions we see that the mrl ordering can be 
expressed as 

~o ~(x)F2(x) dx t> ~ ~(,x)F~x) d,x (4.3) 
[.o fl(x)F2(x)dx io fl(x)Fl(x)dx' 

where the functions ~ and fl satisfy the same conditions as in (d) of Theorem 3.1. If we restrict 0¢ to be 
nonnegat ive ,  then the condi t ion  o~/fl nondecreas ing  wou ld  force ~ to  be nondecreasing.  Def ine  

~* (x) = I x co(u) du 
do 

and 

fl*(x)= f f  fl(u)du, 

with 0~*(0)= fl*(0)=0. Using integration by parts in (4.3), the inequality can be rewritten as 

E~*(x~) E~*(X1) 
- -  I> - -  (4.4) 
E,O*(X~) E,O*(X,) ' 

where the random variables X~ are assumed to be distributed according to the distribution functions F~. The 
inequality (4.4) may be taken as a criterion for mrl ordering where ~* and fl* are nonnegative nondecreasing 
convex functions tending to 0 as x--,0 and the ratio of their derivatives is increasing. 

References  

Bickel, P. and E.L. Lehmann (1975), Descriptive statistics for nonparametric models II, Ann. Statist. 3, 1045-1069. 
Cap6rarl, P. (1988), Tail ordering and asymptotic efficiency of rank tests, Ann. Stat. 16, 470-478. 
Keilson, J. and U. Sumita (1982), Uniform stochastic ordering and related inequalities, Canad. J. Statist. 10, 181-189. 
Lynch, J., G. Mimmack and F. Proschan (1987), Uniform stochastic orderings and total positivity, Canad. J. Statist. 15, 63-69. 


