Probability in the Engineering and Informational Sciencé§ 2001 401-408 Printed in the US.A.

STOCHASTIC PROPERTIES OF
SPACINGS IN A SINGLE-OUTLIER
EXPONENTIAL MODEL

BAHA-ELDIN KHALEDI

Department of Mathematics
University of Arizona
Tucson, Arizona 85721
E-mail: bkhaledi@math.arizona.edu

SUBHASH KOCHAR

Indian Statistical Institute
New Delhi, 110016, India
E-mail: kochar@.isid.ac.in

LetXy,..., X, be independent exponential random variables with possibly different
scale parameter&ochar and KorwafJ. Multivar. Anal.57 (1996] conjectured

that in this casethe successive normalized spacings are increasing according to
hazard rate orderingn this article we prove this conjecture in the case of a single-
outlier exponential model when all except one of the parameters are idekiteal

also prove that the spacings are more dispersed and larger in the sense of hazard rate
ordering when the vector of scale parameters is more dispersed in the sense of
majorization

1. INTRODUCTION

Many authors have studied the stochastic properties of order statistics and spacings
from restricted families of distribution8arlow and Proscha8] proved that in the

case of a random sample from a decreasing failure rate distrihtitieisuccessive
normalized spacings are stochastically lardg@@char and Kirman{10] strength-

ened this result from stochastic ordering to hazard rate ordérivegcorresponding
problem when the random variables are not identically distributeas also been
studied by many researchgrscluding Pledger and Proschiglb], Shaked and Tong
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[17], Kochar and Korwaf11], Kochar and Roj¢12], and Nappo and Spizzichino
[14] among others~or a review of this topicsee Kochaf9].

Before we go into their detailtet us quickly review some important notions of
stochastic orderings of various kind&e shall denote the density functigdhe sur-
vival function and the hazard rate function of a random variabig fy, Fy, andre,
respectivelyA random variableX is said to bestochasticallylarger than another
random variabler (denoted byX =, Y) if Fx(x) = Fy(x) for all x. A stronger notion
of stochastic dominance is thatledéizard rateordering X is said to be larger thavi
in hazard rateordering(denoted byX =, Y) if Fx(x)/Fy(X) is nondecreasing ir.
Finally, X is said to be larger thaxiin likelihood ratioordering(denoted by =, Y)
if fx(x)/fv(x) is nondecreasing ir. For more details on stochastic orderingse
Shaked and Shanthikumgk6, Chap 1]. In caseX andY have a common left end
point of their supportswe have the following chain of implications among the
above stochasticorderf =, Y = X =, Y = X =, V.

Arandom variableXis said to be more dispersed than another random variable
Y (denoted byX _d,SpY) if Fx1(B) — FxY(a) = Fy Y(B) — Fy }(a) whenever 0<
a = B < 1, whereFy ! andFy ! are the right continuous inverses of the distribution
functionsFyx andFy of X andY, respectivelyOne of the consequences of the dis-
persive ordering is thain this casethe variances of the corresponding random
variables are orderedror other properties of dispersive ordering see Shaked and
Shanthikumaf16, Sect 2.B].

At this point let us also give the definitions of majorization and Schur convex-
ity. Let {Xq) = X2 = --+ = X} denote the increasing arrangement of the compo-
nents of the vectox = (X4, Xo,..., X,). The vectoly is said to majorize the vectar
(writtenx < y)if Sy = E,,lx(i) forj=1,...,n—1land>l,y; = 2it1 Xq)-
Functions that preserve the majorization ordering are said to be Schur-c@eex
Marshall and Olki{ 13, Chap 3] for properties of such functions

LetXy,..., X,beindependent exponential random variables Wjthaving haz-
ard rateA; fori € {1,...,n}. Let us denote thith-order statistic and thi¢h spacing
by Xi., andD;., = X;., — Xi_1.n, respectivelyHere X, =0. LetD;;\, = (n—i +1)D;.,
denote theth normalized spacingkochar and Korwaf11] conjectured that for
i=1...,n—1 D ., =n D, In Section 2we prove their conjecture when, =

-+ = A,_1 = AandA, = A% Such a model is known as a single-outlier exponential
model with parameters\, A*) and it has been studied by many researchecfud-
ing Kale and Sinh§7], Joshi 6], Barnett and Lewi$4, p. 193], Gross et al[5], and
Khaledi and Kochaf8], among othersBalakrishnarj2] obtained some recurrence
relations to compute the single and product moments of order statistics when obser-
vations follow the single- as well as multiple-outlier modésing these formulas
he studied the properties of the various estimators in outlier modielslso prove
in Section 2 that ift}; < A< A< AjandAi+ (n—1)A; =A%+ (n—1)A, (inwhich
Case(Ag, ..., Ay A5) = (Agy..., Ap, AY), fori € {1,...,n}, DY is greater thaD?
according to hazard rate as well as dispersive ordevihgreD,} andD/2 respec-
tively stand forith spacing of single-outlier models with parametexs, %) and
(A2, A%).
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2. HAZARD RATE ORDERING AMONG SPACINGS

Let X4,..., X, follow the single-outlier model with parametgrs, A*). It is easy to
see that the joint density function @D,.p,..., D) iS

n

n 0
fDl:n ..... Dn:n(xlw-wxn) = 2 h(e) H ai*e_ai*Xi H a; e Xia
6=1 i=1

i=0+1
wherea; = (N—i+DA, o =(n—i)A+A%i=1...,n and

(n—=1)IAM 1)
h() = —————,  0=1...,n (2.1)

6 n
Hai* H Q;
i=1 1

i=0+

One can see thah(6),0 =1,...,n} is a probability mass function of a discrete
random variabled. Fori = 1,...,n, the marginal density function d;., can be
expressed as

fDi:n(X) = Hi [e4] e wix + Hi ai* eiai*x, (22)

where
i—1
Hi=>h), i=2...,n and H=0. (2.3)
6—1

Thus the density function ob;., is a mixture distribution of two exponential ran-
dom variables with parametesis ande;*. In the following theoremwe prove that
Di*.1.n =nr Din, thus proving the conjecture of Kochar and Kornja@] in the case of
the single-outlier exponential model

THEOREM 2.1: Let X,,..., X, follow the single-outlier exponential model with pa-
rameters(A, A*). Then

Di1.n =nr Ditn, i=1...,n—1
where O, = (n — i + 1) D;., denotes the ith normalized spacing.

Proor: We prove the result fok* > A. The proof for the casg” < A follows using
the same kind of argumentSrom(2.2), we find that the survival function dd;%, is

Foz (X) = Hie ™™+ H e "% wheren; = (n—i)A + A*)/(n—i + 1). To prove the
theoremwe have to show that for anye {1,...,n—1},

'fDi*Jr 1n ( X)

g(x) = Fo (%)
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is nondecreasing ik. The numerator of’(x), the derivative ofy(x), is
A(X) = [Hie ™+ Hie " ][~ AH; e ™ — ni 1 Hip e meaX]

+ [Hi e ™+ Hie X [AH e ™ + n; H e ]

NS (. 1. TP T, MY
n—i+1 n—i
_ HiHisq e—(n.+n.+1)><}
n=i+DLH(n—1i)

= (=) {( H; Hi+1 3 Hi+1Hi )e_mﬂﬂ)x
n—i+1 n—i

— Hi |‘_|i+1 e—(”f],+n,+1)x} (2 4)
(n—=i+1(n—1i) .
A=A _ B .
- (n —(i)(n - i)-i- 1) {n=DH = (n =i+ DHi. s + HiHiyo}
X @ Mt X — H H, ;e tnmedxy, (2.5)

The inequality in(2.4) follows, sinceA™ > A impliesz;1 > n;.
Again, A* > X impliesA < x;, which, in turn, impliese” A 7+0% > g~ (it )X
for everyx = 0. Also, for A* > A,

{(n=DH —(n=i+DHi 1} = (n—Dh(i) — Hisy
=0, (2.6)

since forA* > A, h(j) is a decreasing function pfUnder these results i{2.5), we
find that A(x) and hence’(x) is nonnegative fox = 0. This proves the required
result u

Remark: Kochar and Kirman[10] proved a similar result wheK,,..., X, was a
random sample from a DFR distribution

Let X4,..., X,, be independent exponential random variables with unequal pa-
rametersPledger and Proschaf5] proved that foii € {1,...,n}, D;., is stochas-
tically larger when the parameters are unequal than when they are all &hisal
prompted them to examine the question of whether the survival functién, o
Schur-convex inAy,...,A,). They came up with a counterexample to show that
this is not true in generaKochar and Korwaf11] proved that in the special case
of second spacingwhereas the survival function db,., is Schur-convex in
(A4,...,Ap), its hazard rate is not Schur-concaiidey proved howevey that the
hazard rate oD,., is Schur-concavéVe now examine this question for the single-
outlier model with parameters, A*). In the rest of this sectigrwe assume that
A* < A We will treat it as a part of the modelVe prove later in this section that
if AL <AL, <A< ApandAai+ (n— 1A = A5 + (n— 1), (in which case
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(Agyee i A AL 2 (Aay..., A, A%)), D is greater thad@ according to the haz-
ard rate as well as the dispersive orderingife {1,...,n}. To prove it we need
the following lemmas

Lemma 2.1: Let X, ..., X, follow the single-outlier exponential model with param-
eters(A, A*). Then,
. i—1 .
)\*<)\<:>HisT fori=1,...,n, (2.7)

where H is given by (2.3). The inequality in (2.7) is reversed f6r> A.
Proor: A* < A implies that the functioh( j) in (2.1) isincreasing in, j =1,...,n.
Note that
(h(1),h(2),...,h(n) = (I/n,...,1/n).
The required result follows from the definition of majorization u

LEmMmA 2.2: Let X,,..., X, follow the single-outlier exponential model with pa-
rameters(Aq, A7). Let VY, ..., Y, be another set of random variables following the
single-outlier exponential model with parametéis, A%):

(i) If A5 <AL <A, < Aq, then®, =, O,.
(i) If Ay < Ay < A3 < A, then®, =, O,.

0, and0, correspond to randomariable ® with probability mass function(ty) in
(2.2) for Xi’s and Y's, respectiely.

Proor: (i) We prove thatfop =1,...,n—1,

ha(6+1) _ hy(6)
h(0+1) ~ hy(0)

whereh, andh, correspond tin (2.1) for X;’s andY;’s, respectivelyThis inequal-

ity holds for6 =1,...,n — 1 if and only if
(N—6-DA+ ) _ A
N—0—DA,+ A5 Ay

(2.8)

Since)j < A5 andA, < A4, it is easy to see thdR.8) is true
(i) In this casethe inequality in(2.8) is reversedwhich, in turn, implies that
0, =, 0,. This proves the result u

THEOREM 2.2: Let X,..., X, follow the single-outlier exponential model with pa-
rameter(A,, A7) andlet Y, ...,Y, be another set of random variables following the
single-outlier exponential model with parameténs, A%). If

A< A< A, <A; and A+ (N—DA; =25+ (n—1)A,, (2.9)
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then
Di(::er) Zhr Di(:i)-
Remark: Under(2.9), (A5, Aq,..., A7) 2 (A%, Ag, ., o).

Proor: Without loss of generalitylet us assume thalf; + (n —1)A; = 1.
From(2.2), the survival functions oD, andD,2 are

Fon(x) = Pre X + P e @i
Fo@(x) = Q e “2X + Qe “2

whereP; andQ; correspond téd; in (2.2) for D{¥ andD,2, respectivelyanda;; =

N=i+DAy,ai=(N—i)A 1+ A, ai=(N—i+ DAy, andas = (N—1) A, + As.
We have to show that

Fora0)

P Fa0

is nondecreasing ir. After some simplificationsthe numerator oé’(x), the de-
rivative of ¢(x), is
9(x) = —(aip — aix)P Qe X + (afy — o) P Q € (it e
— (o1 — @2)Q P ez X + (o, — o) Q P (DX (2.10)

Using the assumptiol; < A% < A, < A; and the fact thar? + (n—1)A; =1,
i =12, itfollows thatai; + a5 < ajp + aio, ajp + a5 > afy + o, a1 + o, > oy +
ajp and all(ai1 — i), (a5 — o), and(aj» — 7)) are nonnegativeJsing these
observations irf2.10), we see

g(x) = e e —(a;; — @) P Q + (afy — 1) P Q
- (ail - ai*Z)Qi P+ (ai2 - ai*l)Qi F_)i}

e*(au*ai*z)x

= ———{Q ~P —(nQ — (i =1))A5 + (NP, — (i —1))A3}

n—1
e*(au*ai*z)x
= n_1 {Q =P —n(Q — P)A3}
e*(ai1+ai*2)x
= —hl1 (Q —P)(L—nA3)
= 0. (2.11)

The second inequality if2.11) follows, since by Lemma 2, P, = (i — 1)/n and
A7 < X% From Lemma 22, it follows thatQ; = P;, since likelihood ratio ordering
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implies usual stochastic orderinghis observationalong with the fact thah’ =
1/n, implies the last inequality i(2.10). u

Bagai and Kochalrl] proved that ifX =, Y and eitheiF or G is DFR(decreas-
ing failure rate, thenX =g, Y. It is known that spacings of independent exponential
random variables have DFR distributiaieé. Kochar and Korwaf11]). Combining
these observationse have proved the following corollary

CoroLLARY 2.1: Under the assumptions of Theorem 2.2,

(1) )
i:n 2disp Di:n .

A consequence of Corollary.Ris that VafD;)) = Var(D{2),i =1,...,n.
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