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In this paper, we study the dependence properties of spacings+ It is proved that if
X1, + + + ,Xn are exchangeable random variables which are TP2 in pairs and their joint
density is log-convex in each argument, then the spacings are MTP2 dependent+
Next, we consider the case of independent but nonhomogeneous exponential ran-
dom variables+ It is shown that in this case, in general, the spacings are not MTP2

dependent+ However, in the case of a single outlier when all except one parameters
are equal, the spacings are shown to be MTP2 dependent and, hence, they are as-
sociated+A consequence of this result is that in this case, the variances of the order
statistics are increasing+ It is also proved that in the case of the multiple-outliers
model, all consecutive pairs of spacings are TP2 dependent+

1. INTRODUCTION

LetX1, + + + ,Xn ben random variables+We shall denote byXi :n thei th-order statistic of
X1, + + + ,Xn+ Let Di :n 5 Xi :n 2 Xi21:n denote thei th spacing, i 51, + + + , n, with X0:n [ 0+
It is well known that ifX1, + + + ,Xn is a random sample from an exponential distribu-
tion, then D1:n, + + + ,Dn:n are independent+ In this paper, we study the dependence
properties of spacings whenXi ’s are not necessarily independent and identically
distributed as exponentials+The related problem of stochastic orderings among spac-
ings has been extensively studied in the literature+ For details, the reader is referred
to a recent review paper on this topic by Kochar@9# + Throughout this paper, increas-
ing means nondecreasing anddecreasingmeans nonincreasing+

There are several notions of positive and negative dependences among random
variables with varying degrees of strength+ There is a vast literature on this topic,
with important contributions by Lehmann@11# ,Esary and Proschan@3# ,Barlow and
Proschan@1# , Block and Ting@2# , and Karlin and Rinott@6,7# , among others+ Per-
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haps the strongest notion of positive dependence between random variablesSandT
is that of TP2 dependence~also known aslikelihooddependence!+ SandT are TP2

dependentif their joint densityf ~s, t! is totally positive of order 2 insandt, or,more
precisely, if

* f ~s1, t1! f ~s1, t2!

f ~s2, t1! f ~s2, t2!* $ 0 (1.1)

whenevers1 , s2 andt1 , t2+
We say thatT is right-tail increasingin S if P@T . t 6S . s# is increasing in

s for all t, and we denote this relationship by RTI~T 6S!+ Finally, random variables
S andT areassociated@written A~S,T !# if cov@G~S,T !,D~S,T !# $ 0 for all pairs
of increasing binary functionsG and D+ As shown in Barlow and Proschan@1,
p+ 143# , the following chain of implications holds among the above notions of
positive dependence:

TP2~S,T ! n RTI~S6T ! n A~S,T !+ (1.2)

There are many other notions of dependence, but we will not discuss them here+
These concepts of bivariate dependence can be easily extended to the multivar-

iate case+Afunctionc :Rn r @0,`! is said to bemultivariate total positivity of order
2 ~denoted by MTP2! if

c~x!c~y! # c~x ∧ y!c~x ∨ y! for everyx andy in Rn,

where x ∧ y 5 ~min~x1, y1!, + + + ,min~xn, yn!! and x ∨ y 5 ~max~x1, y1!,
+ + + ,max~xn, yn!!+ Random variablesX1, + + + ,Xn are said to be MTP2 dependent if
their joint density function is MTP2+ It is shown in Kemperman@8# ~see also Block
and Ting@2# ! that if the support of a random vectorX 5 ~X1, + + + ,Xn! is a lattice~i+e+,
if x andy are in the support ofX, then so arex ∧ y andx ∨ y!, thenX is MTP2 if
and only if its density functionf is TP2 in each pair of its variables when the other
n 2 2 variables are held fixed+ See Karlin and Rinott@6# for more details on the
properties of MTP2 functions+ Random variablesX1, + + + ,Xn are conditionally in-
creasing in sequenceif P@Xi . x6X15x1, + + + ,Xi215xi21# is increasing inx1, + + + , xi21

for i 5 2, + + + , n+ Finally, a set of random variablesX 5 ~X1, + + + ,Xn! are associated if
cov~u~X!, v~X!! $ 0 for all increasing binary functionsu andv+ Karlin and Rinott
@6# proved that if a set of random variables are MTP2 dependent, then they are
conditionally increasing in sequence,which, in turn, implies that they are associated
~cf+ Barlow and Proschan@1, p+ 146# !, a result which extends~1+2! to the multivar-
iate case+

It is known that spacings of a random sample from a DFR~decreasing failure
rate! distribution are conditionally increasing in sequence~cf+ Barlow and Proschan
@1, p+ 151# !+ Karlin and Rinott@6# have pointed out that if the DFR assumption is
strengthened to assume that the parent distribution has a log-convex density, then the
spacings have the corresponding stronger property of being MTP2 dependent+ In
Section 2,we extend this result to the case when the random variablesX1, + + + ,Xn are
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dependent+ It is proved that if the joint probability density function~p+d+f+! of Xi ’s
is permutation symmetric, TP2 in pairs, and log-convex in each argument, then
their spacings are MTP2 dependent~Theorem 2+1!+ In Section 3, we study the de-
pendence properties of spacings of independent but nonidentically distributed ex-
ponential random variables+We show with the help of a counterexample that in this
case, the spacings may not be MTP2 dependent+ In fact, for n53, even RTI~D3:36D2:3!
does not hold for some values of the parameters~Example 3+1!+ However, it is
shown that cov~D2:3,D3:3! is nonnegative~Corollary 3+1! due to its Schur convexity
~Theorem 3+2!+ It is also proved that in the case of a single outlier when all
except one of the parameters are equal, the spacings are MTP2 dependent~Theo-
rem 3+4!+A consequence~Corollary 3+2! of this result is that in this case, var~X1:n! #
var~X2:n! # {{{ # var~Xn:n!+We also prove that in the case of the multiple-outliers
model~Theorem 3+5!, any pair of consecutive spacingsDi :n andDi11:n are TP2 de-
pendent fori 5 1, + + + , n 2 1+

2. DEPENDENCE AMONG SPACINGS OF EXCHANGEABLE
RANDOM VARIABLES

As pointed out in Karlin and Rinott@6, p+ 483# , the spacings of a random sample
from a distribution with log-convex density are MTP2 dependent+ In Theorem 2+1,
we extend this result to the case when random variables are exchangeable and TP2 in
pairs+

Theorem 2.1: Let X1, + + + ,Xn be exchangeable randomvariables with absolutely
continuous joint p+d+f+ fX ~x1, + + + , xn!, which is positive on ) i51

n V i
n, Vi , R1,

i 5 1, + + + , n, and satisfies the following conditions:

~a! fX is TP2 in pairs+
~b! fX is log-convex in each argument when remaining arguments are held

fixed+
~c! The first partial derivative of fX~x! with respect to xi exists for i51, + + + , n+

Then, D1:n, + + + ,Dn:n are MTP2 dependent+

Proof: The joint p+d+f+ of D1:n, + + + ,Dn:n is

fD~d1, + + + ,dn! 5 n! fxSd1,(
j51

2

dj , + + + ,(
j51

i

dj , + + + ,(
j51

n

diD+
By Theorem 1+5 of Karlin @5# , fD~d1, + + + ,dn! will be TP2 in pairs ofd1, + + + ,dn if and
only if for any i Þ j, 1 # i, j # n, ~]0]di ! log fD~d1, + + + ,dn! is increasing indj + Let
i , j+ By the chain rule of differentiation,

S ]

]di
D log fD~d1, + + + ,dn! 5 (

k5i

n S ]

]xk
D log fXSd1,(

j51

2

dj , + + + ,(
j51

i

dj , + + + ,(
j51

n

diD,
(2.1)
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wherexk 5 (l51
k dl for k [ $1, + + + , n%+ The term~]0]xk! log fX~x! is increasing inxk

for k [ $1, + + + , n%, asfX is log-convex inxk for eachk+ It is increasing inxm, mÞ k,
m [ $1, + + + , n% becausefX is TP2 in pairs+ Now, xm andxk are both increasing func-
tions ofdj + This implies that~]0]di ! log fD~d1, + + + ,dn! is an increasing function ofdj +
Hence, fD~d1, + + + ,dn! is TP2 in pairs+ Clearly, the support of spacings is a lattice
under the given conditions+ Combining these facts, we get the required result+ n

Remark: In Theorem 2+1, if instead of conditions~a! and~b!, we assume thatfX is
RR2 ~reverse regular of order 2! @two random variablesSandT are RR2 dependent
if the inequality in~1+1! is reversed# in pairs andfX is log-concave in each argument,
then one can prove that the joint p+d+f+ of spacings is RR2 in pairs+

Lemma 2.1: For a bivariate randomvector ~X,Y!,

cov~Y2 X,X ! $ 0 n var~X ! # var~Y!+ (2.2)

Proof: The inequality cov~Y2 X,X ! $ 0 implies cov~X,Y! $ var~X !, which, in
turn, implies that

H var~X !

var~Y!
J # r2~X,Y! # 1,

wherer~X,Y! is the correlation coefficient betweenX andY+ The required result
follows from this+ n

This lemma and Theorem 2+1 lead to the following interesting corollary+

Corollary 2.1: Under the assumptions of Theorem2+1,

var~X1:n! # var~X2:n! # {{{ # var~Xn:n!+

Proof: Because under the given conditionsDi :n’s are MTP2 dependent, they are
associated+ This implies that forn 5 1, + + + , j 2 1,

cov~Xj :n 2 Xj21:n,Xj21:n! [ covSDj :n,(
i51

j21

Di :nD $ 0, (2.3)

as(i51
j21 Di :n andDj :n are increasing functions of~D1:n, + + + ,Dn:n!+ The required result

follows from Lemma 2+1+ n

Example 2.1~Inverted Dirichlet Distribution!: Let Xi , i 5 0, + + + , n, be independent
gamma random variables each with scale parameter 1 such thatX0 has shape param-
eter b and Xi has shape parametera, for i [ $1, + + + , n%+ Then, the joint p+d+f+ of
Yi 5 Xi 0X0, i 5 1, + + + , n, is

fY1, + + + ,Yn
~ y1, + + + , yn! 5

G~na 1 b!

~G~a!!nG~b!

S)
i51

n

yiDa21

S11 (
i51

n

yiDna1b
for yi $ 0+
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It is easy to see thatfY1, + + + ,Yn
~ y1, + + + , yn! is exchangeable,TP2 in pairs, and log-convex

in each argument when 0, a , 1 andna 1 b $1+ Thus, the conditions of Theorem
2+1 are satisfied, and as a result, the spacings ofY1, + + + ,Yn are MTP2 dependent+ By
Corollary 2+1, the variances of the successive order statistics increase asi goes from
1 to n+

3. THE CASE OF HETEROGENEOUS EXPONENTIALS

The exponential distribution plays a central role in reliability theory+ In this section,
we study the dependence properties of spacings when the observationsX1, + + + ,Xn are
independent withXi having exponential distribution with parameterl i , i 51, + + + , n+
Their joint density is given by~cf+ Kochar and Korwar@10# !

fD1:n, + + + ,Dn:n
~x1, + + + , xn ! 5 (

~r !

)
i51

n

l i

)
i51

n

(
j5i

n

l~rj !
)
i51

n S(
j5i

n

l~rj !DexpH2xi (
j5i

n

l~rj !J
(3.1)

for xi $ 0, i 5 1, + + + , n, where~r ! 5 ~r1, + + + , rn! is a permutation of~1, + + + , n! and
l~i ! 5 l i + It is a mixture of products of exponential distributions+ From ~3+1!, it is
easy to find that the joint p+d+f+ of ~Di :n,Dj :n! for 1 # i , j # n is

fDi :n,Dj :n
~x, y! 5 (

~r !

)
i51

n

l i

)
i51

n

(
j5i

n

l~rj !

3 S(
m5i

n

l~rm!DexpH2x (
m5i

n

l~rm!JS(
m5j

n

l~rm!DexpH2y (
m5j

n

l~rm!J
(3.2)

for x, y $ 0+
The next example shows that the spacings may not be MTP2 dependent if the

li ’s are all different+

Example 3.1:Let X1, X2, andX3 be independent exponential random variables with
respective hazard rates 5, 4, and 1+ Using~3+2!, we find, after some simplifications,
that

h~ y! 5 P~D3:3 . 26D2:3 . y!

5

20e20ySS 1

9e9y
1

1

6e6yDS1

5De210 1 S 1

9e9y
1

1

5e5yDS1

4De28 1 S 1

6e6y
1

1

5e5yDe22D
e11y 1 4e14y 1 5e15y

+
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It is clear from Figure 1 that the functionh~ y! is not monotonically increasing,
proving thereby thatD3:3 is even not RTI inD2:3+ Hence, D2:3 andD3:3 are not TP2
dependent+

The covariance betweenDi :n andDj :n for i , j is

cov~Di :n,Dj :n! 5(
~r !

)
i51

n

l i

)
i51

n

(
j5i

n

l~rj !
H(

m5i

n

l~rm!J21H(
m5j

n

l~rm!J21

2 3(~r !

)
i51

n

l i

)
i51

n

(
j5i

n

l~rj !
H(

m5i

n

l~rm!J214 3(~r !

)
i51

n

l i

)
i51

n

(
j5i

n

l~rj !
H(

m5j

n

l~rm!J214 +
We conjecture that, in general, the covariance betweenDi :n andDj :n for i , j is

nonnegative+We prove this conjecture forn 5 3 in Corollary 3+1+ In fact, we prove
in Theorem 3+2 that the covariance betweenD2:3 andD3:3 is Schur convex inl i ’s+

Let $x~1! # x~2! # {{{ # x~n!% denote the increasing arrangement of the compo-
nents of the vectorx 5 ~x1, x2, + + + , xn!+ The vectory is said to majorize the vectorx
~writtenx d

m
y! if (i51

j y~i ! # (i51
j x~i ! for j 51, + + + , n21 and(i51

n y~i ! 5 (i51
n x~i ! +

Functions that preserve the ordering of majorization are said to be Schur convex;
that is, a real functionf defined on a setA , Rn is said to be Schur convex onA if
x d

m
ynf~x! # f~y!+See Marshall and Olkin@12,Chap+ 3# for properties and more

Figure 1. Graph ofh~ y!+
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details of such functions+ The following characterization of Schur-convex functions
will be used to prove Theorem 3+2+

Theorem 3.1. ~cf+Marshall and Olkin@12, p+ 57#: Let I , R be an open interval and
letf : I n rR be continuously differentiable+Necessary and sufficient conditions for
f to be Schur convex on In are f is symmetric on In and, for all i Þ j,

~zi 2 zj !@f~i !~zi ! 2 f~ j !~zj !# $ 0 for all z [ I n,

wheref~i !~z! denotes the partial derivative of f with respect to its ith argument+

Theorem 3.2: Let X1, X2, and X3 be independent exponential randomvariables
having hazard ratesl1, l2, and l3, respectively+ Then, cov~D2:3,D3:3! is Schur
convex inl i ’s+

Proof: The covariance betweenD2:3 andD3:3 is

f~l1,l2,l3! 5 cov~D2:3,D3:3!

5 ~l1l2l3!~l1 1 l2 1 l3!21

3 @~l1
22 1 l2

22!~l11 l2!221 ~l1
22 1 l3

22!~l1 1 l3!22

1 ~l2
22 1 l3

22!~l2 1 l3!22#

2 $~l1 1 l2 1 l3!21~l30~l1 1 l2! 1 l20~l1 1 l3!

1 l10~l2 1 l3!!%

3 $~l1l2l3!~l1 1 l2 1 l3!21

3 $~l2
22 1 l3

22!~l2 1 l3!21

1 ~l1
22 1 l3

22!~l1 1 l3!21

1 ~l1
22 1 l2

22!~l1 1 l2!21%%+ (3.3)

After some simplifications, we find that ~l1 2 l2!$f~1!~l1,l2,l3! 2
f~2!~l1,l2,l3!% is equal to

8~l1 2 l2!2l3
2

~l1 1 l2!~l1 1 l3!~l2 1 l3!~l1 1 l2 1 l3!
,

which is nonnegative for alll1,l2,l3 . 0+ Because the functionf is symmetric in
~l1,l2,l3!, the required result follows from Theorem 3+1+ n

Corollary 3.1: Under the assumptions of Theorem3+2, cov~D2:3,D3:3! $ 0 and
var~X1:3! # var~X2:3! # var~X3:3!+

Proof: Let Nl be the average ofl i ’s+ It is easy to see that~ Nl, Nl, Nl! d
m

~l1,l2,l3!+
From Theorem 3+2, we get

f~ Nl, Nl, Nl! # f~l1,l2,l3!, (3.4)
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where the functionf is given by~3+3!+ The left-hand side of~3+4! is zero, since
spacings of a random sample from an exponential distribution are independent+ This
proves that cov~D2:3,D3:3! $ 0+ SinceD1:3 is independent ofD2:3 andD3:3, it follows
that cov~X3:3 2 X2:3,X2:3! $ 0+ The required result follows from Lemma 2+1+ n

Gross, Hunt, and Odeh@4# considered the single-outlier model in which all
except one of thel i ’s are equal; that is, l1 5 l andl2 5 {{{ 5 ln 5 l*, l Þ l*+ They
incorrectly pointed out that in this case, the spacingsDi :n andDj :n are independent for
j 2 i $ 2+Although it is true thatD1:n is independent of~D2:n, + + + ,Dn:n!, the otherDi ’s
are not independent+ In fact, for n 5 4,

cov~D2:4,D4:4! 5
2l*~l* 2 l!2

~l* 1 l!~2l* 1 l!2~3l* 1 l!2 ,

which is positive unlessl*5 l+ Theorem 3+4, which follows, replaces the incorrect
result of Gross et al+ @4# for the single-outlier model+

To prove the remaining results of this section, we shall repeatedly use the fol-
lowing known result+

Theorem 3.3 ~Shaked and Spizzinchino@13# !: Let the joint distribution function of
X 5 ~X1, + + + ,Xn! be

F~x1, + + + , xn! 5E
2`

1`

)
i51

n

Fi ~xi 6ui ! dG~u!,

where Fi ~{6u! is an absolutely continuous distribution function with respect to Le-
besgue measure on R for eachu in the support ofQ with density function fi ~{6u! for
i 5 1, + + + , n+ Suppose that the support of~X1, + + + ,Xn! is a lattice+ If fi ~x6u! is TP2

~RR2! in ~x,u! for all i [ $1, + + + , n%, then~X1, + + + ,Xn! is MTP2+

In the next theorem, we prove that in the case of a single-outlier exponential
model, the spacings are MTP2 dependent+

Theorem 3.4: Let Xi , i 5 1, + + + , n, be independent exponential randomvariables
such that X1 has hazard ratel and Xi has hazard ratel* for i [ $2, + + + , n%+ Then,
~D1:n, + + + ,Dn:n! is MTP2 dependent+

Proof: Using~3+1!, we find that the joint p+d+f+ of ~D1:n, + + + ,Dn:n! in this case is

fD1:n, + + + ,Dn:n
~x1, + + + , xn! 5 (

u51

n ~n 2 1!! l~l* !n21

)
i51

u

~~n 2 i !l* 1 l! )
i5u11

n

~n 2 i 1 1!l*

3 )
i51

u

~~n 2 i !l* 1 l!e2~~n2i !l*1l!xi

3 )
i5u11

n

~n 2 i 1 1!l*e2~n2i11!l*xi,
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which can be expressed as

fD1:n, + + + ,Dn:n
~x1, + + + , xn! 5E

2`

1`

)
i51

n

fDi :n
~xi 6u! dPQ~u!,

whereQ is a discrete random variable with the probability mass function,

pQ~u! 5
~n 2 1!! l~l* !n21

)
i51

u

~~n 2 i !l* 1 l! )
i5u11

n

~n 2 i 1 1!l*
for u 5 1, + + + , n,

and

fDi :n
~x6u! 5 H~~n 2 i !l* 1 l!e2~~n2i !l*1l!x, i # u

~n 2 i 1 1!l*e2~n2i11!l*x, i $ u 1 1+
(3.5)

We show that the conditional densities as given by~3+5! are all TP2 if l , l* and are
all RR2 if l . l*+ Supposeu1 , u2 andu1,u2 [ $1, + + + , n%+ Then, the ratio

fDi :n
~x6u2!

fDi :n
~x6u1!

5 5
1, i # u1

~~n 2 i !l* 1 l!e2~~n2i !l*1l!x

~n 2 i 1 1!l*e2~n2i11!l*x , u1 , i # u2

1, u2 , i

is increasing~decreasing! in x if l , ~.! l* for i 51, + + + , n; that is, fDi :n
~x6u! is TP2

~RR2! in ~x,u!+ The required result follows from Theorem 3+1+ n

Corollary 3.2: Under the assumptions of Theorem3+4,

var~X1:n! # var~X2:n! # {{{ # var~Xn:n!+

In the next theorem, we consider the multiple-outliers model+According to this
model, X1, + + + ,Xk are i+i+d+ exponentials with hazard ratel andXk11, + + + ,Xn are i+i+d+
exponentials with hazard ratel*,wherek[ $2, + + + , n22%+We prove that in this case,
Di :n andDi11:n are TP2 dependent fori 5 1, + + + , n 2 1+ It is not known whether the
spacings are MTP2 dependent in this case+

Theorem 3.5: Let Xi , i 51, + + + ,n, be independent exponential randomvariables such
that Xi has hazard ratel for i [ $1, + + + , k% and hazard ratel* for i [ $k11, + + + , n%,
k [ $2, + + + , n 2 2%+ Then, Di :n and Di11:n are TP2 dependent+

Proof: Without loss of generality, we assume thatk # n 2 k+

Case (i): Let k , i # n2 k+ From~3+2!, the joint p+d+f+ of ~Di :n,Di11:n! for this set
of l i ’s can be expressed as

fDi :n,Di11:n
~x, y! 5E

2`

1`

fDi :n
~x6u! fDi11:n

~ y6u! dPQ~u!,
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whereQ is a discrete random variable taking values 0,1,2, + + + ,2k with the following
probability mass function+ For u 5 0,2,4, + + + ,2k,

pQ~u! 5 lk~l* !n2kk!~n 2 k!! (
~r u!

1

)
i51

n

(
j5i

n

l~rj !

,

where the summation is taken over all permutations of

~r u ! 5 ~

k2u02

AFFFFFDFFFFFG
l, + + + ,l,

i212k1u02

AFFFFFFFDFFFFFFFG
l*, + + + ,l*,

1

ADG
l* ,

u02

AFFFFFDFFFFFG
l, + + + ,l,

n2i2u02

AFFFFFFFDFFFFFFFG
l*, + + + ,l* ! (3.6)

for which thei th component of~r u ! is l* and its lastn 2 i components consist of
~u02! l’s and~n 2 i 2 u02! l*’s+

For u 5 1,3,5, + + + ,2k 2 1,

pQ~u! 5 lk~l* !n2kk!~n 2 k!! (
~r u
' !

1

)
i51

n

(
j5i

n

l~rj
'!

,

where the summation is taken over all permutations of

~r u
' ! 5 ~

k2~u11!02

AFFFFFDFFFFFG
l, + + + ,l ,

i212k1~u11!02

AFFFFFFFDFFFFFFFG
l*, + + + ,l* ,

1

ADG
l ,

~u11!0221

AFFFFFDFFFFFG
l, + + + ,l ,

n2i2~u11!0211

AFFFFFFFDFFFFFFFG
l*, + + + ,l* ! (3.7)

for which thei th component of~r u
' ! is l and the lastn2 i components of~r u

' ! consist
of ~~u 1 1!02 2 1! l’s and~n 2 i 2 ~u 1 1!02 1 1! l*’s+

For u [ $0, + + + ,2k%,

fDi :n
~x6u! 5 $~n 2 i 2 @~u 1 1!02# 1 1!l* 1 @~u 1 1!02#l%

3 e2$~n2i2@~u11!02#11!l*1@~u11!02#l%x, (3.8)
and

fDi11:n
~x6u! 5 $~n 2 i 2 @u02# !l* 1 @u02#l%e2$~n2i2@u02# !l*1@u02#l%x, (3.9)

where@x# denotes the greatest integer less than or equal tox+
To prove the required result, we show thatfDi :n

~x6u! andfDi11:n
~x6u! are all TP2

if l , l* and are all RR2 if l . l*+

fDi :n
~x6u 1 1!

fDi :n
~x6u!

5
$~n 2 i 2 @~u 1 2!02# 1 1!l* 1 @~u 1 2!02#l%e2$~n2i2@~u12!02#11!l*1@~u12!02#l%x

$~n 2 i 2 @~u 1 1!02# 1 1!l* 1 @~u 1 1!02#l%e2$~n2i2@~u11!02#11!l*1@~u11!02#l%x

5 5
1, if u 5 1,3,5, + + + ,2k 2 1

$~n 2 i 2 u02!l* 1 ~u02 1 1!l%

$~n 2 i 2 u02 1 1!l* 1 ~u02!l%
e2~l2l* !x, if u 5 0,2,4, + + + ,2k 2 2+

(3.10)
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From~3+10!, we conclude that ifl , l* ~l . l*!, thenfDi :n
~x6u! is TP2 ~RR2!

for i 5 1, + + + , n+ Similarly, for fDi11:n
~x6u!, we have

fDi11:n
~x6u 1 1!

fDi11:n
~x6u!

5
$~n 2 i 2 @~u 1 1!02# !l* 1 @~u 1 1!02#l%e2$~n2i2@~u11!02# !l*1@~u11!02#l%x

$~n 2 i 2 @u02# !l* 1 @u02#l%e2$~n2i2@u02# !l*1@u02#l%x

5 5
1, if u 5 0,2,4, + + + ,2k 2 2

$~n 2 i 2 ~u 1 1!02!l* 1 ~~u 1 1!02!l%

$~n 2 i 2 ~u 2 1!02!l* 1 ~~u 2 1!02!l%
e2~l2l* !x, if u 5 1,3,5, + + + ,2k 2 1+

(3.11)

Again, from ~3+11!, it follows thatfDi11:n
~x6u! is TP2 ~RR2! if l , l* ~l . l*!+

Using these observations, the required result follows from Theorem 3+1+

Case (ii): i. n2 k+ In this case foru [ $0,2, + + + ,2~n2 i !%, ~r u! is given by~3+6!,
and for u [ $1,3, + + + ,2~n 2 i ! 1 1%, ~r u

' ! is given by ~3+7!+ Hence, for u [
$0,1,2, + + + ,2~n2 i 11! 21%, fDi :n

~x6u! andfDi11:n
~x6u! are the same as given by~3+8!

and~3+9!, respectively+ The required result follows from the same kind of arguments
as in case~i!+

Case (iii): i # k+ The proof is similar to the previous case+ The vectors~r u! and
~r u
'! corresponding to~3+6! and~3+7! are as follows+ For u 5 0,2, + + + ,2i 2 2,

~r u ! 5 ~

i212u02

AFFFFFDFFFFFG
l, + + + ,l,

u02

AFFFFFFFDFFFFFFFG
l*, + + + ,l*,

1

ADG
l ,

k2i1u02

AFFFFFDFFFFFG
l, + + + ,l,

n2k2u02

AFFFFFFFDFFFFFFFG
l*, + + + ,l* !,

for which thei th component of~r u! is l and the lastn2 i components of~r u! consist
of ~k 2 i 1 u02! l’s and~n 2 k 2 u02! l*’s+

For u 5 1,3, + + + ,2i 2 1,

~r u
' ! 5 ~

i2~~u11!02!

AFFFFFDFFFFFG
l, + + + ,l ,

~~u11!02!21

AFFFFFFFDFFFFFFFG
l*, + + + ,l* ,

1

ADG
l* ,

k2i1~~u11!02!

AFFFFFDFFFFFG
l, + + + ,l ,

n2k2~~u11!02!

AFFFFFFFDFFFFFFFG
l*, + + + ,l* !,

for which thei th component of~r u
' ! isl* and the lastn2 i components of~r u

' ! consist
of ~k 2 i 1 ~u 1 1!02! l’s and~n 2 k 2 ~u 1 1!02! l*’s+

Therefore, for u [ $0, + + + ,2i 2 1%,

fDi :n
~x6u! 5 $~k 2 i 1 1 1 @u02# !l 1 ~n 2 k 2 @u02# !l* %

3 e2$~k2i111@u02# !l1~n2k2@u02# !l* %x

and

fDi11:n
~x6u! 5 $~k 2 i 2 @~u 1 1!02# !l 1 ~n 2 k 2 @~u 1 1!02# !l* %

3 e2$~k2i2@~u11!02# !l1~n2k2@~u11!02# !l* %x+

The required result follows from the same kind of arguments as in case~i!+ n
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4. CONCLUDING REMARKS

In this paper, we have obtained some new results on dependence among spacings of
heterogeneous independent exponential random variables+Whereas in the case of a
single-outlier exponential model, the spacings are shown to be MTP2 dependent, it
is not known whether the same result holds for the multiple-outliers model+ In the
latter case, we are only able to establish TP2 dependence between consecutive spac-
ings+ Another unsettled question is to examine whether in the case of independent
exponential random variables, in general, the spacings are positively correlated+We
have given a proof of this conjecture forn 5 3+
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