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Abstract: Various methods and criteria for comparing coherent systems are discussed. The-
oretical results are derived for comparing systems of a given order when components are
assumed to have independent and identically distributed lifetimes. All comparisons rely on the
representation of a system’s lifetime distribution as a function of the system’s “signature,” that
is, as a function of the vecter= (p,, ..., p,), wherep; is the probability that the system fails
upon the occurrence of thieh component failure. Sufficient conditions are provided for the
lifetime of one system to be larger than that of another system in three different senses: stochastic
ordering, hazard rate ordering, and likelihood ratio ordering. Further, a new preservation theorem
for hazard rate ordering is established. In the final section, the notion of system signature is used
to examine a recently published conjecture regarding componentwise and systemwise
redundancy© 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 507-523, 1999

Keywords: coherent system; stochastic ordering; hazard rate ordering; likelihood ratio order-
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1. INTRODUCTION

An n-component system is said to be coherent if every component is relevant, i.e., has an
effect on system performance, and if the system is monotone, i.e., the improvement of
components cannot lead to a deterioration in system performance. The notion of coherence is
central in reliability analysis since any system without it would rightly be judged to be
fundamentally flawed and subject to alteration. While the performance characteristics of
coherent systems have been the subject of considerable study, the development of comparisons
among them is at present quite incomplete. In this paper, we propose a hew approach based on
a standardizing assumption that places the systems being compared on an equal footing. We will
show that our approach provides a framework under which rather strong conclusions can be
reached regarding the lifetime distributions of competing systems.

There are a variety of ways to compare two coherent systems. Comparison methods which
induce a total ordering on the set of all coherent systems of a given size are typically based on
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comparing the values of a particular figure of merit for the systems (for example, the systems’
expected lifetimes). Among the limitations of such approaches are the inevitable analytical
difficulties in computing the desired figure of merit when a system is complex and the fact that
any single numerical measure of a system’s performance provides insight into just one aspect
of the quality of that system. Methods which induce partial orderings among coherent systems
tend to be based on structural comparisons which allow one to declare that a given system is
better than another in some uniform sense. Typically, when two systems are ordered in this
universal way, the corresponding ordering in terms of relevant figures of merit will hold as an
easy conseqguence.

Let us consider in more detail some varied approaches to the comparison of two coherent
systems of orden. Let x € {0, 1}" be the state vector of am component system, where

1 if componeni works,
%= { 0  otherwise, @
fori = 1,...,n, and let¢;(x) be the structure function for systemthat is, let
(1 if components are in stateand thegth system works, 5
¢(x) = 0 if components are in stateand thegth system fails, @

with j = 1 or 2. Now suppose

$1(X) = ¢a(x) vVxe{o, ;" @)

Then the second system will work under any condition under which system 1 works, so that
system 2 is clearly a better system. For an interesting example of this mode of system
comparison, see Block and Borges [2]. An example of two systems which are not comparable
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®

@
Figure 1. A consecutive 2-out-of-4 system.
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Figure 2. Two parallel systems in series.
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relative to this ordering appears in Figures 1 and 2. For the state vector (0, 0, 1, 1), the system
in (4) works and the system in (5) fails, while, for the state vector (1, 0, 0, 1), the system in (4)
fails and the system in (5) works. We will return to the comparison of these two systems using
the alternative method developed in Section 2.

To continue with our discussion of comparison methods, let us assume that two systems of
ordern have statistically independent components, and that the XtaiEeach component is
a Bernoulli random variable with parametgr Then the reliability functiorh;(p) of systemj
is given by

hi(p) = P(¢;(X) = 1).

hy(p) = hy(p) vpelo,1], (6)

we would properly assert that system 2 is better than system 1. The fact that (3) implies (6) is
obvious from the definition of the reliability functidm It is easy to show, in fact, that (3) and

(6) are equivalent. Suppose, however, that we wish to compare the two systems when their
components’ states are assumed to be identically distributed with common probability of

succesp; = p. In that event, the reliability function depends on the single pararpetend we

would consider system 2 better than system 1 if

hi(p) = hx(p) vVpelo, 1. ()

While (3) still implies (7), the converse is false. It can be shown, for example, that the system
in (4) is better than the system in (5) in the sense of inequality (7) in spite of the fact that their
structure functions are not comparable via the partial ordering induced by (3).

We should perhaps mention, in passing, a notable alternative approach to the comparison of
systems. One might compare two systems, possibly of different omlerand n,, with
components of varying reliabilitp; = (pyq, - - -, P1n,) @ndp, = (P2g, - - -, Pon,)- The first
system would be judged better than the other if its reliability functio(p,) is larger than
h,(p,). Such an approach is taken by Proschan and Tsaturyan [7], who compare series-parallel
(and parallel-series) systems for which component reliabilities differ in a well-defined way.

The comparisons above are cast in terms of the state of the system (as reflegted by
at some fixed point in time. It is often of interest to compare system lifetime distributions,
judging one system to be better than another if it “tends to last longer” in some specific sense.
If the lifetimes of systems 1 and 2 are denotedilyandT,, then one would certainly consider
system 2 better than system 1 if

P(T,>1t) =P(T,>1) Vt=0, (8)

that is, if T, is stochastically smaller thaf, (T, ='T,). For a systemp of ordern having
statistically independent components whose lifetimgg pave distributions £}, i = 1, ...,
n, the survival function~(t) = P(T > t) of the system lifetimeél may be written as

r:(t) = h(b['_:l(t)l r:2(t)v e !'En(t)]i (9)
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whereF(t) = 1 — F(t) fori =1, ...,n.

In Section 3, the comparison of systems is restricted to the case where component lifetimes
are independent and identically distributed [as in the comparison in (7)]. While this would seem
to be quite a restrictive assumption, we wish to put forward the argument that, in a sense, this
is the most natural situation in which to compare systems, and that such a comparison constitutes
the truest test of a preference for one system over another.

While there are many situations in which we might want to compare two systems, these
situations tend to be characterized by the fact that the systems being compared are “similar.” For
example, we would probably not think of comparing the reliability functions of a television set
and an automobile. We might, on the other hand, be very interested in comparing two
automobiles. This suggests that comparison of systems makes the most sense when the systems
being compared are of the same order and when the components of one system can be viewed
as being comparable to those of the second system. Beyond the restriction to “similar systems,”
we would argue that the comparison is most meaningful when the component lifetimes of both
systems are independent and identically distributed. We would certainly prefer to use a
four-component series system each of whose components work with probability 0.9 than a four
component parallel system whose components each work with probability 0.1. We would not,
however, declare a series system to be better than a parallel system on that basis. When
component lifetimes are taken as i.i.d., any remaining differences in system lifetime character-
istics must be attributed to differences in the systems themselves. While we recognize that in
particular applications, the lifetimes of the components actually employed might not reasonably
be assumed to be i.i.d., the relative performance of systems under an i.i.d. assumption can still
provide worthwhile information about system quality. We now turn to the development of our
approach to comparing systems of ordewith i.i.d. components.

2. THE SIGNATURE OF A COHERENT SYSTEM

A comprehensive treatment of system comparisons would have to account for all of the
intricacies involved in a system’s design and the effects of the varying distributions of
component lifetimes and the possible dependencies among them. Comparisons are simplified
substantially when component lifetimes are independent and have a common distrfbution
Interestingly, the simplification goes beyond replacing a complex joint distributiofy ,of . . ,

X, by a simple function of the single distributién The i.i.d. assumption also allows us to focus

on a particular, easily quantifiable aspect of a system’s design which contains all the information
that is relevant to the characteristics of system lifetime. In this section, we define the “signature”
of a coherent system and illustrate its computation.

Consider a coherent system whaseomponents have lifetimes that aried. according to a
continuous distributiofr. Let X, . .. , X, be the component lifetimes, and Ebe the lifetime
of the system. We note first that the system lifetimbas an order statistic equivalent, that is,
that system failure always coincides with that of tecomponent for somee {1, ..., n}.
Indeed, ifX;, represents theh smallest component lifetime,= 1, ... ,n, then we havd €
{ Xy Xy - -+ Xm} With probability one. Thus, we may identify the probability vector
where

pi = P(T = X(i)), | = 1, ..., N, (10)

corresponding to each fixed coherent system of andérwill shortly be shown that the lifetime
distribution of a coherent system with i.i.d. components depends on the system’s structural
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design solely through the vectpr we will thus refer top as the system’signature.Iln terms
of the orderings of the component lifetimgs, X,, .. ., X,,, one can define the signatyseas
the probability vector with elements

_ #of orderings for which theth failure causes system failure
B n! ’

Pi i=1,...,n

The vectom is most easily obtained from the familiar cut set representation of system lifetime,
namely,

T= min maxX, (11)
1=j=r IEK;
whereK, ..., K, are the minimal cut sets of the system under study. The following example

illustrates the computation qf for a particular system.

EXAMPLE: Consider the system displayed in Figure 3 below.

2/

—(1)— - (12)
_@_

Figure 3. A series-parallel system in three components.

The minimal cut sets of this system afg = {1} and K, = {2, 3}. From (11), we may
identify the system lifetime as

T = min{X;, maxX,, Xs)}.

The order statistic equivalent dfis shown below for each of the 3! orderings of the component
lifetimes:

Ordering T
X1 < X, < X X
X; < X3 < X, X
X, < Xy < Xq X2 (13)
X, < X3 < X3 X2
X3 < X, < X, X2
Xy < X, < Xy X2

Since each ordering is equally likely, we may identify the signature of the system abpve as
(173, 2/3, 0).
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We now establish a fundamental property of a system’s signgiuneamely, that the
distribution of the system lifetimd, given i.i.d. components lifetimes with c.dF., can be
expressed as a function pfandF alone.

THEOREM 1: LetX, ..., X, be thei.i.d. component lifetimes of a coherent system of order
n, and letT be the system lifetime. Then

pr>0=3p 3 (1) Foy For (1)

i=1  j=0

PROOF: Letw be a permutation of the positive integers {1, 2, . n},and let A, be the
collection of permutations for whicli = X, that is, for whichT = X_, whereX, < X_
< ---< X, . Note that, given any permutatiam, X, = X;, w.p. 1. We thus have

PT>t)= > P(T>t, mEA)

i=1

n
=> > PT>t, X, <X, <---<X,)

i=1 wEA

n
=> > PX, >t X, <X, <---<X.).

i=1 wEA

= > PXy >t Xy < X, <o < X)), (15)

i=1 wEA

But the events X;, > t} and {X, < X, <---< X, }in (15) are independent by Lemma
8.3.11 of Randles and Wolfe [8], since the former depends solely on the order skgtistind
the latter depends on thés only through the ranks of the original observatiots X, - - -
Xp- It thus follows that

n

PT>1) =2 PXy>1) 2 P(Xy < X, < -+ -< X))

i=1 TEA

= 2 P(X > HP(m E A)

i=1
= piP(Xg > 1)
i=1

i—-1

=2 p > () FOY (Fey™,
i=1  j=0
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completing the proof. [

It is worth mentioning that the representation in (14) holds in contexts more general than the
one studied here. In particular, it holds under the less stringent assumption that the component
lifetimes X4, ..., X, are exchangeable.

The representation in (14) is exploited in Samaniego [9] to obtain a useful representation of
a system'’s failure rate when is absolutely continuous. In that paper, necessary and sufficient
conditions are given for a coherent system in i.i.d. IFR components to itself have an IFR lifetime
distribution. Our present interest is themparisonof two systems with i.i.d. components. As
is clear from Eq. (14), the lifetime of a coherent system with i.i.d. components depends on the
structure of the system only through the signatprdndeed, if two systems have the same
signature, the stochastic behavior of their lifetimes is identical. It is natural to ask if two different
coherent systems can have the same signature. The answer is yes; it is easily verified that the
four-component system with minimal cut sets {1, 2}, {2, 4}, {3, 4} has the same signature as
the four-component system with minimal cut sets {1, 2}, {1, 3}, {1, 4}, {2, 3, 4}.

The discussion above shows that a certain amount of simplification is possible in character-
izing the influence of system design on the distribution of system lifetime. The sigratfre
a system serves as a compact but complete summary of the structure fupctiond also
eliminates the duplication inherent in different structure functions whose impact on the distri-
bution of system lifetime is identical. We develop below a further simplification, showing that
the signature of a given system can be obtained without further computation from the signature
of its dual.

Let ¢ be the structure function of a system of sizeThedual of ¢ is the structure function
¢P given by

d°(x) =1— ¢p(1 —x) VvV x € [0,1]" (16)

It follows that if y is a cut vector ofp, i.e., ¢(y) = 0, thend®(1 — y) = 1, that is,1 — y is
a path vector ot®. Further, ifA,, ..., A, are the minimal path sets @f, thenA,, ..., A,
are the minimal cut sets @°. Simple examples of duality include: theout-of-n system is the
dual of the f — k + 1)-out-ofn system. For further discussion of duality, see Barlow and
Proschan [1].

Since the number of coherent systems of omlean be large (growing exponentially i),
results which demonstrate relationships between particular systems serve to reduce the compu-
tational burden of obtaining the signatures of all systems of a given order. The following result
cuts this burden in half.

THEOREM 2: Letp be the signature of a fixed systegnwhosen components have i.i.d.
lifetimes, and lep® be the signature of its dual systepi?. Then

pi=pi for i=1,2,...,n. (17)

PROOF: Given component lifetimeg,, . . . , X,,, let T andT® be the lifetimes of systems
and ¢, respectively. It suffices to show that

T= X(,) |f and On|y |f TD = X(n—i+l)-
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Employing the notation introduced in Theorem 1, tetrepresent a given permutation of the
integers {1, 2, ... n}, and letA; = the set of permutations of {1, . . .n} such thatT = X_,
whereX, < X_ <---<X,;thus,m € Ajifandonly if T = X;;,. Now, assume thah, is
nonempty. Form € A, letx,. € {0, 1}" be the state vector of the components at the time of
system failure, that is, let,, be defined as

1 if j >1,
=10 ifj=i.

Thus,x,. has exactlyi 0’s and fi — i) 1's. Moreover,

and
1 if ,
s0={o ity=x e

Now, by its definition,1 — x_ has fi — i) 0's andi 1's. Further
(1 = X5) = 1 — ¢(x,)=1
and

1 ify=1-x,,
d)D(y):{o fy<1—x. (19)

From the latter characteristic ¢i°, we deduce that then(— i + 1) failure causes the failure
of the dual systeng®, i.e., TP = X _..,- Since this holds true for every € A;, we have that

ar,

T® = X(u_i, 1. It follows that if p, = P(T = X;,) andp® = P(T° = X,), then

(pl! p2| e 1pn) = (pr?! pﬁfl! e !p?)i (20)

that is,p; = py_;,, fori = 1,2,...,n, as claimed. O
We now proceed to our investigation of comparisons among coherent systems of a given
order based on the properties of the systems’ signatures.

3. COMPARING SYSTEM LIFETIMES

In this section, we develop three different scenarios for comparing the performance of
coherent systems. Our three results feature increasingly stringent requirements on system
signatures and demonstrate that these lead to correspondingly stronger conclusions regarding the
distributions of system lifetime. We begin with a result which examines the consequence of the
stochastic ordering of two signatures. For two discrete distributiqrend p, on the integers
{1, ..., n}, we write p, =% p, if and only if
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2Ppy=2ps for j=1,2,....n (21)

i=j i=j

It is obvious that ordered structure functions, ig,(x) = ¢, (x) as in (3), will imply ordered
signatures, i.e.p; = p,. The systems displayed in (4) and (5) constitute an example which
shows that the converse implication fails. The relation between stochastically ordered signatures
and system lifetimes is as follows:

THEOREM 3: Letp, andp, be the signatures of the two systems of ondeand letT, and
T, be their respective lifetimes. i, =% p,, thenT, = T,.

PROOF: We may rewrite the representation in (14) in a more convenient form:

PT>0=2p 2 (]) FOY 1= Ft)™

= ( D pi> () (Fay (@ - Fy™.

j=0 \i=j+1

We thus have, by virtue of the assumption that=®'p,, that

P(T,>t) =2 ( > pn) (7) (F) @ - Fo)™
j=0 \i=j+1

=2

=

j=0

( > p) (1) (Fy @ = F)™

i=j+1
=P(T,>t) Vt=0,

which is equivalent tor, =% T,. O

It is easy to verify that the five different systems of order 3 are totally ordered in the sense
of the theorem above. The 20 different coherent systems of order 4 cannot be totally ordered in
this way. For example, the systems in Figure 4 below are not comparable by the method
developed in this paper. While short of providing a total ordering, Theorem 2 sheds considerable
light on the relative merits of various systems of order 4. Of the 190 possible pairwise
comparisons among the systems of order 4, Theorem 3 may be applied to 180 pairs, identifying
in each of these cases the system whose lifetime is stochastically larger when component
lifetimes are i.i.d. Returning to the comparison of the two systems of order 4 displayed in (4)
and (5), it can easily be verified that the signature of the system in @)=s0, 1/2, 1/2, 0),
while the signature of the system in (5) is (1/4, 1/4, 1/2, 0). It follows from Theorem 2 that, given
i.i.d. components, the system in (5) has a stochastically smaller lifetime.
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Figure 4. Noncomparable systems of order 4.
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We now examine the implications of a stronger form of ordering between two system
signatures. LeK; andX, be random variables with survival functioRg andF,, respectively.
ThenX, =" X, (i.e., X, is smaller tharX, in the hazard rate ordering) if and only if the ratio

liz(x)
Fi(x)

is nondecreasing fox < F(1). For two discrete distributions, andp, on the set {1, ... n},
we say thap, =" p, if and only if

E Pz
j=i

n

2 Py

j=i

is nondecreasing in The following lemma is proved in Joag-dev, Kochar, and Proschan [5]:

LEMMA 1: Let « and 3 be real valued functions such thats nonnegative and/B and 3
are nondecreasing. X, ~ F;, i = 1, 2, andX; =" X,, then

J x a(x) dFy(x) J m a(x) dFy(x)

- = . (22)
J B(x) dFy(x) f B(x) dF(x)

—0

THEOREM 4: Letp, andp, be the signatures of two coherent systems, and JeindT, be
the corresponding system lifetimes.pf <" p, thenT, ="' T,.

PROOF: The survival function of, may be written as
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P(T,>1) = Z PP (X > t).

We must prove that

> PP (X > ty) > PP (X > ty)
= V tl < tz, (23)

> PP (X > ty) > puP (X > ty)

or equivalently

> PP (X > tp) i PP (X > tp)
<

> PuP (X > ty) > PP (X > ty)

Vot <t,

To employ Lemma 1, we make the identificatioi) = P(X;, > t;) andB(i) = P(X) > ty),
and identifyF; as the discrete distributiop, for j = 1, 2. First, we note that

a(i)  P(Xg>1ty)
= = 24
B PXy> 1) @4
is an increasing function af The monotonicity of the ratio in (24) follows from the fact that

P(Xi+1 > tp) _ P(X4 > to)
P(Xisn >t) — P(Xi>1ty)

Vi<t

P(Xi+1 > t2) _ P(Xi+1 > t1)

- Vt,=t
PXp>1t) — P(Xp>1ty) s
Fao(t

LM is an increasing function af
F(i)(t)

The latter fact follows sinceX.; =" X, a result which holds as long as th¢'s are
independent, whether they are identically distributed or not (see, for example, Boland, El-
Newehi, and Proschan [4]).

Secondly, we note thgB(i) = P[X;, > t] is increasing ini since the successive order
statistics are stochastically ordered. The required result, i.e., inequality (23), thus follows from
(22) under the assumption that <" p,. O

Our next result studies the effect of likelihood ratio ordering between system signatures. Let
X, andX, be real valued random variables with respective dendifiesdf,. ThenX, = X,

(i.e., X, is smaller thanX,, in the likelihood ratio ordering) if and only if the ratio

f5(x)
f1(x)
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is nondecreasing ir. For two discrete distributions, andp, on{1, 2, ... ,n}, p, =" p, if and
only if p,/p,; is nondecreasing in

THEOREM 5: LetT, andT, denote the lifetimes of two coherent systems in i.i.d. compo-
nents with signaturep, andp,, respectively. Ifp, = p,, thenT, =" T,.

PROOF: Foij = 1, 2, the survival function of; is

'_:j(t) = p;iP(Xg) > 1)

i=1

and the corresponding probability density function is

fi(t) = Z Pji fo(t).

i=1

It is sufficient to prove that for any real numberthe function

g(t) = E Pai fi(t) — ¢ E P (1)

i=1 i=1

= Z [P — cpy] (1)

has at most one change of sign from negative to positivé gees from 0 toce. Since

p: =" p,, pa/py is nondecreasing inand, as a result, the sequenge,{ — cp,;} has at most
one change of sign from negative to positiveiagoes from 1 ton. Since in the i.i.d. case,
Xi-1 <" X for anyi, we have that;,(t)/f;_1,(t) is nondecreasing it That is, the function
fi)(t) is Totally Positive of Order 2TP,) in (i, t). It follows from the variation diminishing
property of TP, functions (see Karlin [6]) thad(t) has at most one change of sign from negative
to positive ag increases from-oo to «. This completes the proof. [

The results above show that the precise characteristics of a coherent system’s signature have a
direct effect on its lifetime distribution. As is well known (see Shaked and Shanthikumar [10]), the
orderings we have discussed are increasingly stringent, pyita p, = p; =" p, = p; =*p,.
Examples of systems with signatures satisfying some but not all these order relations are displayed
in Figures 5 and 6.

There are a variety of other implications one may draw about the lifetime distribution of a
system based on the representation (14) of that distribution as a function of system signatures.
For example, it was shown in Samaniego [9] that a coherent systenm with. IFR components
was IFR if and only if the rational functiory, given by

= Dpf | Ju

P(u) = E:ol (3 pj)(?>ui ,

j=i+1

(25)
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Figure 5. Systems for whichp, =% p,, p; " p,, p1 = p..
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Figure 6. Systems for whichp, =% p,, p; =" p,, p; =" p..

is increasing foiu € (0, ). Using the failure rate representation in that paper, namely,

_ (F®
r+(x) = ¢ =0 r(b), (26)

which is valid wherF is absolutely continuous with failure rate one may easily establish the
following ordering result.

THEOREM 6: Let¢ be a fixed system in i.i.d. components, andHgt F, be two absolutely
continuous lifetime distributions whose failure rates satisfy

r(X) = ryx) Y X.

Fori = 1, 2, letT; be the lifetime of the systerp when its components have i.i.d. lifetimes
drawn fromF,;, and suppose that the functignin (25) is increasing on (0¢). Then

M(X) = re(x) V X,

that is, hazard rate ordering of component lifetimes implies hazard rate ordering of system
lifetimes.
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4. AN APPLICATION INVOLVING REDUNDANCY

As a final example demonstrating the utility of system signatures in the comparison of
particular systems, we consider a problem posed in the recent literature regarding the compar-
ative performance of system vs. component redundancy. It is, of course, well known that
componentwise redundancy is more effective than system-wise redundancy. Theorem 2.4 in
Barlow and Proschan [1] states this domination in terms of the structure functions of the two
designs &, = ¢,). Assuming i.i.d. component lifetimes, this then implies domination in terms
of signaturegp, = p,) and thus in terms of system lifetimé€E, = T,). But other questions of
interest arise in this context. For example, in this same i.i.d. setting, is it possible to conclude
that T, =" T,? Boland and EI-Newehi [3] showed that this latter implication did not hold in
general, but conjectured that hazard rate ordering of system lifetimes does hold when the two
types of redundancy are applied t&kaut-of-n system in i.i.d. components.

The conjecture above has now been proven true; indeed, Singh and Singh [11] establish the
stronger implicationl; = T, for componentwise over systemwise redundanci-ofit-ofn sys-
tems. However, their proof involves a technical lemma establishing several delicate inequalities, and
requires the tacit assumption that the underlying component lifetime distribatisrabsolutely
continuous. We provide an alternative proof here that is both simpler (i.e., based on elementary
combinatorics) and more general than that given by Singh and Singh [11]. Our proofs of the
following two theorems hold for arbitrary continuous distributiéng\ direct comparison of system
signatures, together with an application of our Theorem 5, then proves the conjecture.

A 2 out of 3 system with redundancy at the system level is pictured in Figure 7, while a
2-out-of-3 system with componentwise redundancy is pictured in Figure 8.

We first establish the general form of the signatures of these two types of systems.

THEOREM 7: The signaturp of a k-out-ofn system with systemwise redundancy is
n—1 n
() (-i))

Pon-ak 201 :(ZH_;B" forr=0,1,...,k—1 @7)

2k —2~—r

withp, =0forl=i<2n—-2k+ 2andforh — k+ 1<i = 2n.

HOOO®OO
CIOIGICION0

Figure 7. Systemwise redundancy.
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RPRPYG

Figure 8. Componentwise redundancy.

PROOF: For = 0, ...,k — 1, we give a combinatorial proof which accounts for a ratio
composed of: (i) the number of orderings of the @mponent failures for which the system
fails upon the (2 — 2k + 2 + r)th failure to (ii) the number of all possible orderings [that
is, (2n)!] of component failures. Since system failure is only possible when at leastK +
1) failures occur among the original and among the back up components, it is clepy that
0ifi < 2n — k + 2. Further, the maximal number of possible failures that can occur without
causing failure to the system i:12- k (e.g.,n — k originals andn backups). It is thus clear
thatp, = 0 fori > 2n — k + 1.

Now, consider orderings for which ther{2- 2k + 2 + r)th component failure is fatal to
the system. The number of such orderings is the product of the following factors: the2e are
ways to select batch #1, the batch of components (original or back up) from which the
component failure fatal to the system will be drawn; there are{+ 1) ways to select the
(n — k + 1) components that fail among timein batch #1; there areq(—x 11+ ) ways to
select therf — k + 1 + r) components that fail prior to system failure among tha batch
#2, there arer{ — k + 1) ways to select the failed component which is fatal to the system;
there are Zn — 2k + r + 1)! orderings of the (2 — 2k + r + 1) component failures that
occur prior to the component failure fatal to the system; and there Zke—(r — 2)!
orderings of the remaining (hypothetical) component failures following system failure. It is
easy to show that the product of these terms, divided2my!( reduces to the expression for

Pon—2ks2+r IN (27). U

THEOREM 8: The signature of krout-of-n system with redundancy at the component level
is given by

n—1 k-1 2"
Ponsks2er = <k<12n(£)) forr=0,1,...,k—1, (28)

2k—2-r

withp,=0forl=i<2n—-2k+ 2andforh —k+ 1<i = 2n.
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PROOF: As Figure 8 suggests, it is helpful to think of the system of interest here as a
k-out-ofn system inn modules, each module being a small parallel system. For such a system
to fail, we must have preciselyn(— k + 1) failed modules. For reasons similar to those cited
in the proof of Theorem 7, we hayg > O ifandonly if2n — 2k + 2 =i = 2n — k + 1.

Now, consider orderings of component failures for which the component fatal to the system
is the (h — 2k + 2 + r)th component to fail. The number of such orderings is the product
of the following factors: there are,(_R . ;) ways to select then(— k + 1) modules whose
failure results in system failure; there are;(1) ways to select other modules in which single
component failures have occurred prior to system failure; ther@'aneys to select a single
failed component from the component pair in each of thmodules containing exactly one
failure; there areZn — 2k + 2) ways to select the component whose failure is fatal to the system
from among the 8 — 2k + 2 components in the first — k + 1 modules to fail; there are
(2n — 2k + 1 + r)! orderings of the (&8 — 2k + 1 + r) components that fail before the
component whose failure is fatal to the system; and thereZkre-(2 — r)! orderings of the
remaining (hypothetical) component failures following system failure. The product of the terms
above, divided byZn)!, can easily be reduced to the expressiondQf_ oy, in (28). O

Armed with the signature formulae fde-out-of-n systems under systemwise and compo-
nentwise redundancy, we are now in a position to establish the desired result.

THEOREM 9: For 1= k = n, let T, be the lifetime of ak-out-of-n system with i.i.d.
components under systemwise redundancy, and Jdbe the corresponding lifetime of the
system under componentwise redundancy. Thes’ T,.

PROOF: For =0, 1, ...,k — 1, we have from Theorems 7 and 8 that

k—1 r
) = P (( ) 2) |

2n—2k+2+r K—r—1

Now s(r) is proportional to the function

(n=k+r+1)2
t(r) = )

rt
The fact thats(r) is nondecreasing in is implied by the fact that the inequalityr + 1)/t(r)
= 1 holds for allr = 0. Given the monotonicity o, it follows from Theorem 5 that
T,="T,. O

Note that the fact thgt™ < p@, as shown in Theorem 8, implies (by virtue of Theorem 2)
that the signatures of the two systems that are the duals of those in Theorem 8 satisfy the
opposite inequality, that ipy = p2’. This in turn implies that the lifetimes of the dual
systems satisff 2 = TY. This result is an immediate consequence of the approach taken here,
but is not easily derived as a consequence of the developments in Singh and Singh [11].
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