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Abstract: Various methods and criteria for comparing coherent systems are discussed. The-
oretical results are derived for comparing systems of a given order when components are
assumed to have independent and identically distributed lifetimes. All comparisons rely on the
representation of a system’s lifetime distribution as a function of the system’s “signature,” that
is, as a function of the vectorp 5 ( p1, . . . , pn), wherepi is the probability that the system fails
upon the occurrence of thei th component failure. Sufficient conditions are provided for the
lifetime of one system to be larger than that of another system in three different senses: stochastic
ordering, hazard rate ordering, and likelihood ratio ordering. Further, a new preservation theorem
for hazard rate ordering is established. In the final section, the notion of system signature is used
to examine a recently published conjecture regarding componentwise and systemwise
redundancy.© 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 507–523, 1999
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1. INTRODUCTION

An n-component system is said to be coherent if every component is relevant, i.e., has an
effect on system performance, and if the system is monotone, i.e., the improvement of
components cannot lead to a deterioration in system performance. The notion of coherence is
central in reliability analysis since any system without it would rightly be judged to be
fundamentally flawed and subject to alteration. While the performance characteristics of
coherent systems have been the subject of considerable study, the development of comparisons
among them is at present quite incomplete. In this paper, we propose a new approach based on
a standardizing assumption that places the systems being compared on an equal footing. We will
show that our approach provides a framework under which rather strong conclusions can be
reached regarding the lifetime distributions of competing systems.

There are a variety of ways to compare two coherent systems. Comparison methods which
induce a total ordering on the set of all coherent systems of a given size are typically based on
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comparing the values of a particular figure of merit for the systems (for example, the systems’
expected lifetimes). Among the limitations of such approaches are the inevitable analytical
difficulties in computing the desired figure of merit when a system is complex and the fact that
any single numerical measure of a system’s performance provides insight into just one aspect
of the quality of that system. Methods which induce partial orderings among coherent systems
tend to be based on structural comparisons which allow one to declare that a given system is
better than another in some uniform sense. Typically, when two systems are ordered in this
universal way, the corresponding ordering in terms of relevant figures of merit will hold as an
easy consequence.

Let us consider in more detail some varied approaches to the comparison of two coherent
systems of ordern. Let x [ {0, 1} n be the state vector of ann component system, where

xi 5 H 1 if componenti works,
0 otherwise, (1)

for i 5 1, . . . , n, and letfj(x) be the structure function for systemj , that is, let

f j~x! 5 H 1 if components are in statex and thej th system works,
0 if components are in statex and thej th system fails, (2)

with j 5 1 or 2. Now suppose

f1~x! # f2~x! ; x [ $0, 1%n. (3)

Then the second system will work under any condition under which system 1 works, so that
system 2 is clearly a better system. For an interesting example of this mode of system
comparison, see Block and Borges [2]. An example of two systems which are not comparable

Figure 1. A consecutive 2-out-of-4 system.

Figure 2. Two parallel systems in series.
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relative to this ordering appears in Figures 1 and 2. For the state vector (0, 0, 1, 1), the system
in (4) works and the system in (5) fails, while, for the state vector (1, 0, 0, 1), the system in (4)
fails and the system in (5) works. We will return to the comparison of these two systems using
the alternative method developed in Section 2.

To continue with our discussion of comparison methods, let us assume that two systems of
ordern have statistically independent components, and that the stateXi of each component is
a Bernoulli random variable with parameterpi. Then the reliability functionhj(p) of systemj
is given by

hj~p! 5 P~f j~X ! 5 1!.

If

h1~p! # h2~p! ; p [ @0, 1#n, (6)

we would properly assert that system 2 is better than system 1. The fact that (3) implies (6) is
obvious from the definition of the reliability functionh. It is easy to show, in fact, that (3) and
(6) are equivalent. Suppose, however, that we wish to compare the two systems when their
components’ states are assumed to be identically distributed with common probability of
successpi 5 p. In that event, the reliability function depends on the single parameterp, and we
would consider system 2 better than system 1 if

h1~p! # h2~p! ; p [ @0, 1#. (7)

While (3) still implies (7), the converse is false. It can be shown, for example, that the system
in (4) is better than the system in (5) in the sense of inequality (7) in spite of the fact that their
structure functions are not comparable via the partial ordering induced by (3).

We should perhaps mention, in passing, a notable alternative approach to the comparison of
systems. One might compare two systems, possibly of different ordersn1 and n2, with
components of varying reliabilityp1 5 ( p11, . . . , p1n1

) andp2 5 ( p21, . . . , p2n2
). The first

system would be judged better than the other if its reliability functionh1(p1) is larger than
h2(p2). Such an approach is taken by Proschan and Tsaturyan [7], who compare series-parallel
(and parallel-series) systems for which component reliabilities differ in a well-defined way.

The comparisons above are cast in terms of the state of the system (as reflected byf or h)
at some fixed point in time. It is often of interest to compare system lifetime distributions,
judging one system to be better than another if it “tends to last longer” in some specific sense.
If the lifetimes of systems 1 and 2 are denoted byT1 andT2, then one would certainly consider
system 2 better than system 1 if

P~T1 . t! # P~T2 . t! ; t $ 0, (8)

that is, if T1 is stochastically smaller thanT2 ~T1 #st T2!. For a systemf of order n having
statistically independent components whose lifetimes {Ti} have distributions {Fi}, i 5 1, . . . ,
n, the survival functionF# (t) [ P(T . t) of the system lifetimeT may be written as

F# ~t! 5 hf@F# 1~t!, F# 2~t!, . . . , F# n~t!#, (9)
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whereF# i(t) [ 1 2 Fi(t) for i 5 1, . . . , n.
In Section 3, the comparison of systems is restricted to the case where component lifetimes

are independent and identically distributed [as in the comparison in (7)]. While this would seem
to be quite a restrictive assumption, we wish to put forward the argument that, in a sense, this
is the most natural situation in which to compare systems, and that such a comparison constitutes
the truest test of a preference for one system over another.

While there are many situations in which we might want to compare two systems, these
situations tend to be characterized by the fact that the systems being compared are “similar.” For
example, we would probably not think of comparing the reliability functions of a television set
and an automobile. We might, on the other hand, be very interested in comparing two
automobiles. This suggests that comparison of systems makes the most sense when the systems
being compared are of the same order and when the components of one system can be viewed
as being comparable to those of the second system. Beyond the restriction to “similar systems,”
we would argue that the comparison is most meaningful when the component lifetimes of both
systems are independent and identically distributed. We would certainly prefer to use a
four-component series system each of whose components work with probability 0.9 than a four
component parallel system whose components each work with probability 0.1. We would not,
however, declare a series system to be better than a parallel system on that basis. When
component lifetimes are taken as i.i.d., any remaining differences in system lifetime character-
istics must be attributed to differences in the systems themselves. While we recognize that in
particular applications, the lifetimes of the components actually employed might not reasonably
be assumed to be i.i.d., the relative performance of systems under an i.i.d. assumption can still
provide worthwhile information about system quality. We now turn to the development of our
approach to comparing systems of ordern with i.i.d. components.

2. THE SIGNATURE OF A COHERENT SYSTEM

A comprehensive treatment of system comparisons would have to account for all of the
intricacies involved in a system’s design and the effects of the varying distributions of
component lifetimes and the possible dependencies among them. Comparisons are simplified
substantially when component lifetimes are independent and have a common distributionF.
Interestingly, the simplification goes beyond replacing a complex joint distribution ofX1, . . . ,
Xn by a simple function of the single distributionF. The i.i.d. assumption also allows us to focus
on a particular, easily quantifiable aspect of a system’s design which contains all the information
that is relevant to the characteristics of system lifetime. In this section, we define the “signature”
of a coherent system and illustrate its computation.

Consider a coherent system whosen components have lifetimes that arei.i.d. according to a
continuous distributionF. Let X1, . . . , Xn be the component lifetimes, and letT be the lifetime
of the system. We note first that the system lifetimeT has an order statistic equivalent, that is,
that system failure always coincides with that of thei th component for somei [ {1, . . . , n}.
Indeed, ifX(i ) represents thei th smallest component lifetime,i 5 1, . . . ,n, then we haveT [
{ X(1), X(2), . . . , X(n)} with probability one. Thus, we may identify the probability vectorp,
where

pi 5 P~T 5 X~i!!, i 5 1, . . . , n, (10)

corresponding to each fixed coherent system of ordern. It will shortly be shown that the lifetime
distribution of a coherent system with i.i.d. components depends on the system’s structural
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design solely through the vectorp; we will thus refer top as the system’ssignature.In terms
of the orderings of the component lifetimesX1, X2, . . . , Xn, one can define the signaturep as
the probability vector with elements

pi 5
# of orderings for which thei th failure causes system failure

n!
, i 5 1, . . . , n.

The vectorp is most easily obtained from the familiar cut set representation of system lifetime,
namely,

T 5 min
1#j#r

max
i[Kj

Xi, (11)

whereK1, . . . , Kr are the minimal cut sets of the system under study. The following example
illustrates the computation ofp for a particular system.

EXAMPLE: Consider the system displayed in Figure 3 below.

The minimal cut sets of this system areK1 5 {1} and K2 5 {2, 3}. From (11), we may
identify the system lifetime as

T 5 min$X1, max~X2, X3!%.

The order statistic equivalent ofT is shown below for each of the 3! orderings of the component
lifetimes:

Ordering
X1 , X2 , X3

X1 , X3 , X2

X2 , X1 , X3

X2 , X3 , X1

X3 , X1 , X2

X3 , X2 , X1

T
X~1!

X~1!

X~2!

X~2!

X~2!

X~2!

(13)

Since each ordering is equally likely, we may identify the signature of the system above asp 5
(1/3, 2/3, 0).

Figure 3. A series-parallel system in three components.
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We now establish a fundamental property of a system’s signaturep, namely, that the
distribution of the system lifetimeT, given i.i.d. components lifetimes with c.d.f.F, can be
expressed as a function ofp andF alone.

THEOREM 1: LetX1, . . . , Xn be the i.i.d. component lifetimes of a coherent system of order
n, and letT be the system lifetime. Then

P~T . t! 5 O
i51

n

pi O
j50

i21 Sn
j D ~F~t!! j ~F# ~t!!n2j. (14)

PROOF: Letp be a permutation of the positive integers {1, 2, . . . ,n} and let Ai be the
collection of permutations for whichT 5 X(i ), that is, for whichT 5 Xp i

, whereXp1
, Xp2

, . . . , Xpn
. Note that, given any permutationp, Xp i

5 X(i ) w.p. 1. We thus have

P~T . t! 5 O
i51

n

P~T . t, p [ Ai !

5 O
i51

n O
p[Ai

P~T . t, Xp1 , Xp2 , · · · , Xpn
!

5 O
i51

n O
p[Ai

P~Xpi
. t, Xp1 , Xp2 , · · ·, Xpn

!.

5 O
i51

n O
p[Ai

P~X~i! . t, Xp1 , Xp2 , · · ·, Xpn
!. (15)

But the events {X(i ) . t} and {Xp1
, Xp2

, . . . , Xpn
} in (15) are independent by Lemma

8.3.11 of Randles and Wolfe [8], since the former depends solely on the order statisticX(i ) and
the latter depends on theX’s only through the ranks of the original observationsX1, X2, . . . ,
Xn. It thus follows that

P~T . t! 5 O
i51

n

P~X~i! . t! O
p[Ai

P~Xp1 , Xp2 , · · ·, Xpn
!

5 O
i51

n

P~X~i! . t!P~p [ Ai !

5 O
i51

n

piP~X~i! . t!

5 O
i51

n

pi O
j50

i21

Sn
j D ~F~t!! j ~F# ~t!!n2j,
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completing the proof. h

It is worth mentioning that the representation in (14) holds in contexts more general than the
one studied here. In particular, it holds under the less stringent assumption that the component
lifetimes X1, . . . , Xn are exchangeable.

The representation in (14) is exploited in Samaniego [9] to obtain a useful representation of
a system’s failure rate whenF is absolutely continuous. In that paper, necessary and sufficient
conditions are given for a coherent system in i.i.d. IFR components to itself have an IFR lifetime
distribution. Our present interest is thecomparisonof two systems with i.i.d. components. As
is clear from Eq. (14), the lifetime of a coherent system with i.i.d. components depends on the
structure of the system only through the signaturep. Indeed, if two systems have the same
signature, the stochastic behavior of their lifetimes is identical. It is natural to ask if two different
coherent systems can have the same signature. The answer is yes; it is easily verified that the
four-component system with minimal cut sets {1, 2}, {2, 4}, {3, 4} has the same signature as
the four-component system with minimal cut sets {1, 2}, {1, 3}, {1, 4}, {2, 3, 4}.

The discussion above shows that a certain amount of simplification is possible in character-
izing the influence of system design on the distribution of system lifetime. The signaturep of
a system serves as a compact but complete summary of the structure functionf, and also
eliminates the duplication inherent in different structure functions whose impact on the distri-
bution of system lifetime is identical. We develop below a further simplification, showing that
the signature of a given system can be obtained without further computation from the signature
of its dual.

Let f be the structure function of a system of sizen. Thedual of f is the structure function
fD given by

fD~x! 5 1 2 f~1 2 x! ; x [ @0,1#n. (16)

It follows that if y is a cut vector off, i.e., f(y) 5 0, thenfD(1 2 y) 5 1, that is,1 2 y is
a path vector offD. Further, ifA1, . . . , Ak are the minimal path sets off, thenA1, . . . , Ak

are the minimal cut sets offD. Simple examples of duality include: thek-out-of-n system is the
dual of the (n 2 k 1 1)-out-of-n system. For further discussion of duality, see Barlow and
Proschan [1].

Since the number of coherent systems of ordern can be large (growing exponentially inn),
results which demonstrate relationships between particular systems serve to reduce the compu-
tational burden of obtaining the signatures of all systems of a given order. The following result
cuts this burden in half.

THEOREM 2: Letp be the signature of a fixed systemf whosen components have i.i.d.
lifetimes, and letpD be the signature of its dual systemfD. Then

pi 5 pn2i11
D for i 5 1, 2, . . . ,n. (17)

PROOF: Given component lifetimesX1, . . . , Xn, let T andTD be the lifetimes of systemsf
andfD, respectively. It suffices to show that

T 5 X~i! if and only if TD 5 X~n2i11!.
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Employing the notation introduced in Theorem 1, letp represent a given permutation of the
integers {1, 2, . . . ,n}, and letAi 5 the set of permutations of {1, . . . ,n} such thatT 5 Xp i

,
whereXp1

, Xp2
, . . . , Xpn

; thus,p [ Ai if and only if T 5 X(i ). Now, assume thatAi is
nonempty. Forp [ Ai, let xp [ {0, 1} n be the state vector of the components at the time of
system failure, that is, letxp be defined as

xpj
5 H1 if j . i ,

0 if j # i .

Thus,xp has exactlyi 0’s and (n 2 i ) 1’s. Moreover,

f~xp! 5 0

and

f~y! 5 H1 if y . xp,
0 if y # xp. (18)

Now, by its definition,1 2 xp has (n 2 i ) 0’s andi 1’s. Further

fD~1 2 xp! 5 1 2 f~xp!51

and

fD~y! 5 H1 if y $ 1 2 xp,
0 if y , 1 2 xp

. (19)

From the latter characteristic offD, we deduce that the (n 2 i 1 1)st failure causes the failure
of the dual systemfD, i.e.,TD 5 Xpn2i11

. Since this holds true for everyp [ Ai, we have that
TD 5 X(n2i11). It follows that if pi 5 P(T 5 X(i )) andpi

D 5 P(TD 5 X(i )), then

~p1, p2, . . . , pn! 5 ~pn
D, pn21

D , . . . , p1
D!, (20)

that is,pi 5 pn2i11
D for i 5 1, 2, . . . ,n, as claimed. h

We now proceed to our investigation of comparisons among coherent systems of a given
order based on the properties of the systems’ signatures.

3. COMPARING SYSTEM LIFETIMES

In this section, we develop three different scenarios for comparing the performance of
coherent systems. Our three results feature increasingly stringent requirements on system
signatures and demonstrate that these lead to correspondingly stronger conclusions regarding the
distributions of system lifetime. We begin with a result which examines the consequence of the
stochastic ordering of two signatures. For two discrete distributionsp1 andp2 on the integers
{1, . . . , n}, we write p1 #st p2 if and only if
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O
i5j

n

p1i # O
i5j

n

p2i for j 5 1, 2, . . . ,n. (21)

It is obvious that ordered structure functions, i.e.,f1(x) # f2 (x) as in (3), will imply ordered
signatures, i.e.,p1 #st p2. The systems displayed in (4) and (5) constitute an example which
shows that the converse implication fails. The relation between stochastically ordered signatures
and system lifetimes is as follows:

THEOREM 3: Letp1 andp2 be the signatures of the two systems of ordern, and letT1 and
T2 be their respective lifetimes. Ifp1 #st p2, thenT1 #st T2.

PROOF: We may rewrite the representation in (14) in a more convenient form:

P~T . t! 5 O
i51

n

pi O
j50

i21

Sn
j D ~F~t!! j ~1 2 F~t!!n2j

5 O
j50

n21 S O
i5j11

n

piD (n
j) ~F~t!! j ~1 2 F~t!!n2j.

We thus have, by virtue of the assumption thatp1 #st p2, that

P~T1 . t! 5 O
j50

n21 S O
i5j11

n

p1iD Sn
j D ~F~t!! j ~1 2 F~t!!n2j

# O
j50

n21 S O
i5j11

n

p2iD Sn
j D ~F~t!! j ~1 2 F~t!!n2j

5 P~T2 . t! @ t $ 0,

which is equivalent toT1 #st T2. h

It is easy to verify that the five different systems of order 3 are totally ordered in the sense
of the theorem above. The 20 different coherent systems of order 4 cannot be totally ordered in
this way. For example, the systems in Figure 4 below are not comparable by the method
developed in this paper. While short of providing a total ordering, Theorem 2 sheds considerable
light on the relative merits of various systems of order 4. Of the 190 possible pairwise
comparisons among the systems of order 4, Theorem 3 may be applied to 180 pairs, identifying
in each of these cases the system whose lifetime is stochastically larger when component
lifetimes are i.i.d. Returning to the comparison of the two systems of order 4 displayed in (4)
and (5), it can easily be verified that the signature of the system in (4) isp 5 (0, 1/2, 1/2, 0),
while the signature of the system in (5) is (1/4, 1/4, 1/2, 0). It follows from Theorem 2 that, given
i.i.d. components, the system in (5) has a stochastically smaller lifetime.

515Kochar, Mukerjee, and Samaniego: The “Signature” of a Coherent System



We now examine the implications of a stronger form of ordering between two system
signatures. LetX1 andX2 be random variables with survival functionsF# 1 andF# 2, respectively.
ThenX1 #hr X2 (i.e., X1 is smaller thanX2 in the hazard rate ordering) if and only if the ratio

F# 2~x!

F# 1~x!

is nondecreasing forx , F1
21(1). For two discrete distributionsp1 andp2 on the set {1, . . . ,n},

we say thatp1 #hr p2 if and only if

O
j5i

n

p2j

O
j5i

n

p1j

is nondecreasing ini . The following lemma is proved in Joag-dev, Kochar, and Proschan [5]:

LEMMA 1: Let a andb be real valued functions such thatb is nonnegative anda/b andb
are nondecreasing. IfXi ; Fi, i 5 1, 2, andX1 #hr X2, then

E
2`

`

a~x! dF1~x!

E
2`

`

b~x! dF1~x!

#

E
2`

`

a~x! dF2~x!

E
2`

`

b~x! dF2~x!

. (22)

THEOREM 4: Letp1 andp2 be the signatures of two coherent systems, and letT1 andT2 be
the corresponding system lifetimes. Ifp1 #hr p2 thenT1 #hr T2.

PROOF: The survival function ofT1 may be written as

Figure 4. Noncomparable systems of order 4.
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P~T1 . t! 5 O
i

p1iP~X~i! . t!.

We must prove that

Oi p2iP~X~i! . t2!

Oi p1iP~X~i! . t2!
$

Oi p2iP~X~i! . t1!

Oi p1iP~X~i! . t1!
; t1 , t2, (23)

or equivalently

Oi p1iP~X~i! . t2!

Oi p1iP~X~i! . t1!
#

Oi p2iP~X~i! . t2!

Oi p2iP~X~i! . t1!
; t1 , t2.

To employ Lemma 1, we make the identificationa(i ) 5 P(X(i ) . t2) andb(i ) 5 P(X(i ) . t1),
and identifyFj as the discrete distributionpj for j 5 1, 2. First, we note that

a~i !

b~i !
5

P~X~i! . t2!

P~X~i! . t1!
(24)

is an increasing function ofi . The monotonicity of the ratio in (24) follows from the fact that

P~X~i11! . t2!

P~X~i11! . t1!
$

P~X~i! . t2!

P~X~i! . t1!
; t1 # t2

N
P~X~i11! . t2!

P~X~i! . t2!
$

P~X~i11! . t1!

P~X~i! . t1!
; t1 # t2

N
F# ~i11!~t!

F# ~i!~t!
is an increasing function oft.

The latter fact follows sinceX~i11! $hr X~i !, a result which holds as long as theXi ’s are
independent, whether they are identically distributed or not (see, for example, Boland, El-
Newehi, and Proschan [4]).

Secondly, we note thatb(i ) 5 P[X(i ) . t] is increasing ini since the successive order
statistics are stochastically ordered. The required result, i.e., inequality (23), thus follows from
(22) under the assumption thatp1 #hr p2. h

Our next result studies the effect of likelihood ratio ordering between system signatures. Let
X1 andX2 be real valued random variables with respective densitiesf1 andf2. ThenX1 #,r X2

(i.e., X1 is smaller thanX2 in the likelihood ratio ordering) if and only if the ratio

f2~x!

f1~x!
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is nondecreasing inx. For two discrete distributionsp1 andp2 on $1, 2, . . . ,n%, p1 #,r p2 if and
only if p2i/p1i is nondecreasing ini .

THEOREM 5: LetT1 andT2 denote the lifetimes of two coherent systems in i.i.d. compo-
nents with signaturesp1 andp2, respectively. Ifp1 #,r p2, thenT1 #,r T2.

PROOF: Forj 5 1, 2, the survival function ofTj is

F# j~t! 5 O
i51

n

pjiP~X~i! . t!

and the corresponding probability density function is

fj~t! 5 O
i51

n

pji f~i!~t!.

It is sufficient to prove that for any real numberc, the function

g~t! 5 O
i51

n

p2i f~i!~t! 2 c O
i51

n

p1i f~i!~t!

5 O
i51

n

@p2i 2 cp1i# f~i!~t!

has at most one change of sign from negative to positive ast goes from 0 to`. Since
p1 #,r p2, p2i/p1i is nondecreasing ini and, as a result, the sequence {p2i 2 cp1i} has at most
one change of sign from negative to positive asi goes from 1 ton. Since in the i.i.d. case,
X~i21! ,,r X~i ! for any i , we have thatf(i )(t)/f(i21)(t) is nondecreasing int. That is, the function
f(i )(t) is Totally Positive of Order 2 (TP2) in (i , t). It follows from the variation diminishing
property ofTP2 functions (see Karlin [6]) thatg(t) has at most one change of sign from negative
to positive ast increases from2` to `. This completes the proof. h

The results above show that the precise characteristics of a coherent system’s signature have a
direct effect on its lifetime distribution. As is well known (see Shaked and Shanthikumar [10]), the
orderings we have discussed are increasingly stringent, withp1 #,r p2f p1 #hr p2f p1 #st p2.
Examples of systems with signatures satisfying some but not all these order relations are displayed
in Figures 5 and 6.

There are a variety of other implications one may draw about the lifetime distribution of a
system based on the representation (14) of that distribution as a function of system signatures.
For example, it was shown in Samaniego [9] that a coherent system withn i.i.d. IFR components
was IFR if and only if the rational functionc, given by

c~u! 5

O
i50

n21 ~n 2 i !pi11Sn
i Dui

O
i50

n21 ~O
j5i11

n pj!Sn
i Dui

, (25)
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is increasing foru [ (0, `). Using the failure rate representation in that paper, namely,

r T~x! 5 cSF~t!

F# ~t!D z r ~t!, (26)

which is valid whenF is absolutely continuous with failure rater , one may easily establish the
following ordering result.

THEOREM 6: Letf be a fixed system in i.i.d. components, and letF1, F2 be two absolutely
continuous lifetime distributions whose failure rates satisfy

r 1~x! # r 2~x! ; x.

For i 5 1, 2, letTi be the lifetime of the systemf when its components have i.i.d. lifetimes
drawn fromFi, and suppose that the functionc in (25) is increasing on (0,̀ ). Then

r T1~x! # r T2~x! ; x,

that is, hazard rate ordering of component lifetimes implies hazard rate ordering of system
lifetimes.

Figure 6. Systems for whichp1 #st p2, p1 #hr p2, p1 Ü,r p2.

Figure 5. Systems for whichp1 #st p2, p1 Ühr p2, p1 Ü,r p2.
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4. AN APPLICATION INVOLVING REDUNDANCY

As a final example demonstrating the utility of system signatures in the comparison of
particular systems, we consider a problem posed in the recent literature regarding the compar-
ative performance of system vs. component redundancy. It is, of course, well known that
componentwise redundancy is more effective than system-wise redundancy. Theorem 2.4 in
Barlow and Proschan [1] states this domination in terms of the structure functions of the two
designs (f1 # f2). Assuming i.i.d. component lifetimes, this then implies domination in terms
of signatures~p1 #st p2! and thus in terms of system lifetimes~T1 #st T2!. But other questions of
interest arise in this context. For example, in this same i.i.d. setting, is it possible to conclude
that T1 #hr T2? Boland and El-Newehi [3] showed that this latter implication did not hold in
general, but conjectured that hazard rate ordering of system lifetimes does hold when the two
types of redundancy are applied to ak-out-of-n system in i.i.d. components.

The conjecture above has now been proven true; indeed, Singh and Singh [11] establish the
stronger implicationT1 #,r T2 for componentwise over systemwise redundancy ofk-out-of-n sys-
tems. However, their proof involves a technical lemma establishing several delicate inequalities, and
requires the tacit assumption that the underlying component lifetime distributionF is absolutely
continuous. We provide an alternative proof here that is both simpler (i.e., based on elementary
combinatorics) and more general than that given by Singh and Singh [11]. Our proofs of the
following two theorems hold for arbitrary continuous distributionsF. A direct comparison of system
signatures, together with an application of our Theorem 5, then proves the conjecture.

A 2 out of 3 system with redundancy at the system level is pictured in Figure 7, while a
2-out-of-3 system with componentwise redundancy is pictured in Figure 8.

We first establish the general form of the signatures of these two types of systems.

THEOREM 7: The signaturep of a k-out-of-n system with systemwise redundancy is

p2n22k121r 5
Sn 2 1

k 2 1
DS n

k 2 1 2 r
D

S 2n 2 1
2k 2 2 2 r

D for r 5 0, 1, . . . ,k 2 1 (27)

with pi 5 0 for 1 # i , 2n 2 2k 1 2 and for 2n 2 k 1 1 , i # 2n.

Figure 7. Systemwise redundancy.
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PROOF: Forr 5 0, . . . , k 2 1, we give a combinatorial proof which accounts for a ratio
composed of: (i) the number of orderings of the 2n component failures for which the system
fails upon the (2n 2 2k 1 2 1 r )th failure to (ii) the number of all possible orderings [that
is, (2n)!] of component failures. Since system failure is only possible when at least (n 2 k 1
1) failures occur among the original and among the back up components, it is clear thatpi 5
0 if i , 2n 2 k 1 2. Further, the maximal number of possible failures that can occur without
causing failure to the system is 2n 2 k (e.g.,n 2 k originals andn backups). It is thus clear
that pi 5 0 for i . 2n 2 k 1 1.

Now, consider orderings for which the (2n 2 2k 1 2 1 r )th component failure is fatal to
the system. The number of such orderings is the product of the following factors: there are2
ways to select batch #1, the batch of components (original or back up) from which the

component failure fatal to the system will be drawn; there are (nn 2 k 1 1 ) ways to select the

(n 2 k 1 1) components that fail among then in batch #1; there are ( n
n 2 k 1 1 1 r ) ways to

select the (n 2 k 1 1 1 r) components that fail prior to system failure among then in batch
#2, there are (n 2 k 1 1) ways to select the failed component which is fatal to the system;
there are (2n 2 2k 1 r 1 1)! orderings of the (2n 2 2k 1 r 1 1) component failures that
occur prior to the component failure fatal to the system; and there are (2k 2 r 2 2)!
orderings of the remaining (hypothetical) component failures following system failure. It is
easy to show that the product of these terms, divided by (2n)!, reduces to the expression for
p2n22k121r in (27). h

THEOREM 8: The signature of ak-out-of-n system with redundancy at the component level
is given by

p2n22k121r 5
Sn 2 1

k 2 1
DS k 2 1

r
D 2r

S 2n 2 1
2k 2 2 2 r

D for r 5 0, 1, . . . ,k 2 1, (28)

with pi 5 0 for 1 # i , 2n 2 2k 1 2 and for 2n 2 k 1 1 , i # 2n.

Figure 8. Componentwise redundancy.
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PROOF: As Figure 8 suggests, it is helpful to think of the system of interest here as a
k-out-of-n system inn modules, each module being a small parallel system. For such a system
to fail, we must have precisely (n 2 k 1 1) failed modules. For reasons similar to those cited
in the proof of Theorem 7, we havepi . 0 if and only if 2n 2 2k 1 2 # i # 2n 2 k 1 1.

Now, consider orderings of component failures for which the component fatal to the system
is the (2n 2 2k 1 2 1 r )th component to fail. The number of such orderings is the product
of the following factors: there are ( n

n 2 k 1 1 ) ways to select the (n 2 k 1 1) modules whose
failure results in system failure; there are (k 2 1

r ) ways to selectr other modules in which single
component failures have occurred prior to system failure; there are2r ways to select a single
failed component from the component pair in each of ther modules containing exactly one
failure; there are (2n 2 2k 1 2) ways to select the component whose failure is fatal to the system
from among the 2n 2 2k 1 2 components in the firstn 2 k 1 1 modules to fail; there are
(2n 2 2k 1 1 1 r )! orderings of the (2n 2 2k 1 1 1 r ) components that fail before the
component whose failure is fatal to the system; and there are (2k 2 2 2 r )! orderings of the
remaining (hypothetical) component failures following system failure. The product of the terms
above, divided by (2n)!, can easily be reduced to the expression forp2n22k121r in (28). h

Armed with the signature formulae fork-out-of-n systems under systemwise and compo-
nentwise redundancy, we are now in a position to establish the desired result.

THEOREM 9: For 1# k # n, let T1 be the lifetime of ak-out-of-n system with i.i.d.
components under systemwise redundancy, and letT2 be the corresponding lifetime of the
system under componentwise redundancy. ThenT1 #,r T2.

PROOF: Forr 5 0, 1, . . . ,k 2 1, we have from Theorems 7 and 8 that

s~r ! ;
p2n22k121r

~2!

p2n22k121r
~1! 5

S k 2 1
r D 2r

S n
k 2 r 2 1D

.

Now s(r ) is proportional to the function

t~r ! 5
~n 2 k 1 r 1 1!!2r

r !
.

The fact thats(r ) is nondecreasing inr is implied by the fact that the inequalityt(r 1 1)/t(r )
$ 1 holds for all r $ 0. Given the monotonicity ofs, it follows from Theorem 5 that
T1 #,r T2. h

Note that the fact thatp~1! #,r p~2!, as shown in Theorem 8, implies (by virtue of Theorem 2)
that the signatures of the two systems that are the duals of those in Theorem 8 satisfy the
opposite inequality, that is,pD

~1! #,r pD
~2!. This in turn implies that the lifetimes of the dual

systems satisfyT1
D #,r T2

D. This result is an immediate consequence of the approach taken here,
but is not easily derived as a consequence of the developments in Singh and Singh [11].
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