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Abstract: A random variable Y is right tail increasing (RTI) in X if the failure rate of the conditional
distribution of X given Y > y is uniformly smaller than that of the marginal distribution of X for
every y > 0. This concept of positive dependence is not symmetric in X and Y and is stronger than
the notion of positive quadrant dependence. In this paper we consider the problem of testing for
independence against the alternative that Y is RTI in X. We propose two distribution-free tests and
obtain their limiting null distributions. The proposed tests are compared to Kendall's and
Spearman’s tests in terms of Pitman asymptotic relative efficiency. We have also conducted a Monte
Carlo study to compare the powers of these tests.

Key words and phrases: Kendall’s test, Spearman’s test, Brownian bridge, bivariate exponential
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1 Introduction

When two units (or systems) operate in a common environment they are often
exposed to “identical” stress and strain. This may result in some pattern of
dependence between them. The life times of the units are said to be positively
dependent if long life of one unit is associated with long life of the other.

To formalize our discussion, we let X and Y be random variables denoting the
lifelengths of two (possibly dependent) aging systems. Let H(x, y) be the joint
distribution function of X and Y and H(x, y) = P{X > x, Y > y}. The marginal
distribution function of X (resp. Y) is denoted by F(x) (resp. G(y)) and the
corresponding marginal survival function is defined as F(x) = 1 — F(x) (resp.
G(y) = 1 — G(y)). The survival function, I_iy(-), of the conditional distribution of
X given Y > y is defined by

H,(x) = H(x, y)/G(y) = P{X > x|Y >y} . (1.1)

! Research supported by an NSERC Canada operating grant at the University of Alberta.

Part of this research was done while visiting the University of Alberta supported by the NSERC
Canada grant of the first author.

2

0026 -1335/94/3-4/211-225 $2.50 © 1994 Physica-Verlag, Heidelberg




212 Emad-Eldin A. A. Aly and S. C. Kochar

In a landmark paper, Lehmann (1966) gave several nonparametric notions of
positive dependence between random variables in terms of their joint and mar-
ginal distributions. The most widely studied of them is the notion of positive
quadrant dependence (PQD) which is defined below.

Definition 1.1: X and Y are PQD if the following equivalent conditions hold

1) H(x, y) > F(x)G(y) Y(x, y)
ii) H(x, y) > F(x)G(y) V(x, y)
and

iii)  H,(x)> F(x) Vx and Vy , (1.2)

where H,(-) is as in (1.1). "
Let X, be a random variable associated with H,(:) and let “<” denote the
univariate stochastic ordering. By (1.2), X and Y are PQD if and only if

X,2XxVvy>0.

The concept of PQD is symmetric in X and Y. In many practical situations
asymmetric type of dependence is observed. In such cases the dependence of Y
on X may not be the same as that of X on Y. To express skewed dependence,
Esary and Proschan (1972) introduced the concept of right tail increasing (RTI)
which is defined below.

Definition 1.2: Y is RTl in X if
P{Y > y|X > x} isincreasing in x forall y > 0 ,
or equivalently if
H,(x)/F(x) is increasing in x forall y > 0 . (1.3)

By comparing (1.2) and (1.3) we see that if Y is RTI in X, then X and Y are
PQD and the converse is not necessarily true. This means that the notion of RTI
is stronger than the notion of PQD. However, unlike the notion of PQD, the
notion of RTI is not symmetric in X and Y.
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In the case when the appropriate densities exist, (1.3) is equivalent to
rxlY>y <ri(x)VxandVy >0 ,

where r,(x|Y > y) is the conditional hazard rate of X given Y > y and r,(x) is
the hazard rate of the marginal distribution of X.
The Marshall-Olkin bivariate exponential (BVE) distribution is given by

H(X, Y)=exp{_ilx~12y_0max(x’ y)}s X,YZO ’ (14)

where 4,, 4, and 6 are nonnegative parameters. This distribution is not abso-
lutely continuous and has a singular part. It can be shown that if (X, Y) has the
BVE distribution of (1.4), then Y is RTI in X.

The absolutely continuous BVE (ACBVE) of Block and Basu (1974) is given
by

— A+ 0
H(x,y) =

1 exp{—A4,x — A,y — 6 max(x, y)}

- g exp{—(4 + 6)-max(x, y)},x,y >0, (1.5)

where 4,, 4, and 0 are nonnegative parameters and A = A, + 4,. Assume now
(X, Y) has the ACBVE of (1.5). It can be shown that

_l_ — —9 e M~ - forx <y
Ay A(A+6)

(A, + 6{1 — e72tx-nY)
1+ 0{1 — e 7}

r(x|Y >y)=
“A+06

forx>y

which is nonincreasing in y for each x. Hence Y is RTI in X.

In this paper we consider the problem of testing the null hypothesis of inde-
pendence against the alternative of Y is RTI in X. In Section 2 we propose two
test statistics for this problem and derive their asymptotic null distributions. In
Section 3 we compare our proposed tests to the tests of Kendall and Spearman
in terms of asymptotic relative efficiency. We also conducted a Monte Carlo
power comparison of our tests and Spearman’s test. The asymptotic theory of
the tests of Section 2 is proved in Section 4.
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2 The Proposed Tests

Consider the problem of testing the null hypothesis
H,: X and Y are independent ,
against the alternative

H,;:YisRTlin X .

(2.1

(2.2)

As seen in Section 1, the above problem is equivalent to the problem of testing

the null hypothesis
H, H/()=F()Vy=>0
against
Hi: I_fy(x)/F(x) is increasing in x for each y > 0 .
By (1.3), H,, is also equivalent to
HYr(x]Y >y <rix)forallx,y >0 .
Assume, for the moment that y > 0 is fixed. The problem of testing
H,, H,(")=F(")
against

H, rlY>y<r()

(2.3)

(24)

(2.5

(2.6)

2.7

is like the two-sample problem of testing the equality of two hazard rates (or two
DF’s) against ordered alternatives. Tests for the latter two-sample problem have
been propsed by Kochar (1979, 1981), Joe and Proschan (1984) and Aly (1988),
among others. Loosely. speaking, the problem of testing H, of (2.1) (or (2.3))
against H, of (2.2) (equivalently against H; of (2.4) or H} of (2.5)) is like “testing
H, ,of(2.6) against H, , of (2.7)” for each y. This remark motivated us to propose
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tests for H, against H, which are based on a family of two-sample tests each
corresponging to a fixed value y.

As seen in Joe and Proschan (1984) and Aly (1988) H,(H; or HY) holds if and
only if

4*(t,p,y):=p+pH,F () —H,F ' (p+p1) 20, (2.8)

forally > 0,0 < t, p < 1 with strict inequality for some (¢, p, y), wherep = 1 — p.
Define 4(t, p, s) = (1 — s)4*(t, p, G~(s)) and note that (2.8) is equivalent to

A, p,s)>0forall0<t ps<]1

with strict inequality for some (¢, p, s).
By (1.1), it can be shown that

A(t, p,s) = H(F *(p + pt), G™*(s)) — pH(F (), G*(s)) — ps,0 < t,p,s < 1 .
2.9)

Define

4(s)

11
[ | 4G, p, s)drdp
00

_% - i {% +1In(1 - u)} H(F™(w), G™!(s))du . (2.10)

Note that 8(s) = 0 under H, and é(s) > 0 under H,. Consequently, measures of
the deviation from H, in favor of H, can be defined as appropriate functionals
of &(-). The tests proposed in this article are based on the following two measures

K = sup 4(s) 2.11)
o<s<1
and
1
A= [d(s)ds + ! . (2.12)
0 4

Let (X, V), (X3, Y3), ..., (X,, Y,) be a random sample from H(-, -). The
empirical distribution functions H,(-, -), F,(-) and G,(-) are defined by
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1 n
Hn(x9y) = '_1 Z I(Xx < X, Yi < .V)
i=1
1 n
Fy(x)=— Y I(X; < x)
i=1
and

1 n
Guy) =~ ; (Y, <y),

where I(A) is the indicator function of the event A. Let X;, < X;, < - < X,
(resp. Y, < Y5y < -+ < Y,) be the order statistics corresponding to X |, X ,, ...,
X, (resp. Y}, Y,, ..., V). Let Yy, Y3y, ..., Y, be the concomitant ordered Y’s
which are obtained by ordering the pairs {(X, Y;), 1 <i < n} based on the X
variable only.

A natural estimator of 6(-) of (2.10) is given by

%]

8,(s) = —3= jl' {% +In(1 — u)} H,(F Y (u), G, '(s))du .

0

It can be proved that

- 1n-1 ] 1 ] _ S
8y(s) = ~ ,-; (1 - ;) {5 - ln<1 - ;)}I(Ym <G l(s) - 5 (2.13)

Based on §,(-) of (2.13), K of (2.11) and A of (2.12) we propose the following
test statistics,

n—-1
K" = max {O, max <1 z ajl(Y[J-] S )’(/)) - 2—1)} >

1<¢<n \N j=1

and
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where S; = Rank(Y;;) = nG,(Y;;) and

Large values of K, and A, are significant for testing H, of (2.1) against H, of
(2.2). The asymptotic null distributions of K, and A4, are consequences of the
following Theorem which is proved in Section 4.

Theorem 2.1: Assume that H(-, ) is continuous and that H, holds. Then,

J/54n8,(s) 3 B(s) , (2.14)

where B(*) is a Brownian Bridge.

Corollary 2.1: Under the conditions of Theorem 2.1, we have

J54nK, 3 sup B(s)

0<s<l1

and
J648n{A4, — L} 3 N(©, 1) . (2.15)

It is well known that

P{ sup B(s) > x} =e* x>0.

0<ss<1

Consequently, using the K, statistic, we reject H, in favor of H, at approximate

Ina

1/2
level aif K, > ¢ — } . A Monte Carlo study indicated that the convergence

108n
in (2.15) is faster when A, is centered around its exact null mean. It is easy to see
n—1nr} . .
that, under H,, E(A,) = T Y. a;. Consequently, using the A, statistic, we
j=1

reject H, in favor of H, at approximate level a if

1621
el ,'; an+1-28)>z,_,,
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where z,_, is the (1 — a)* quantile of a N(0, 1) rv (ie, P{N(0,1) <z, ,} =
1 — a).

It can be shown that the above two testing procedures are consistent for
testing independence against alternatives in H,.

3 Asymptotic Relative Efficiencies and Power Comparisons

In this section we compare the K, and A, tests with the Spearman’s rank test
statistic

F=1-63 (i—S)n(n?—1) .
i=1

It is well known that (see for example, Weier and Basu (1980)) the Pitman
asymptotic relative efficiency (ARE) of %, with respect to the Kendall’s 7 statistic
is equal to one. Recall that \/;(,S’; — E(%)) 2 a mean zero normal random
variable. Under H,, E(%,) = 0 and the variance of the limiting normal rv is 1.

First, we compare A4, to %, in terms of Pitman’s ARE using the following
distributions:

a) H,(x,y) = F(x)G(y) + 0F(x){1 — F(x)(1 — In F(x))}G(»)G(y), 0<6 <1
and
b) H,(x, y) as the ACBVE distribution of (1.5) .

Note that both H, (-, -) and H,(-, -) belong to H,. The distribution H,(-, -) is
a Lehmann type alternative in the sense that the power of any rank test against
H,(-, -) is independent of F(-) and G(-).

The computation of the Pitman ARE is straightforward but rather quite
lengthy and involved. For this reason we will give here the final results and refer
the reader to Puri and Sen (1971) for more details. The Pitman ARE of 4, w.r.t.
4, for H,(-, -) is equal to 2. In fact, by the results of Shirahata (1974), it can be
shown that the A4, test is locally most powerful rank test for testing independence
(0 = 0) against 8 > O for the alternative H,(-, ).

The Pitman ARE of A4, w.r.t. &, for the alternative H,(-, *) is given by

ea,,a,(Am <) = el,.lz(An)/eA,‘lz(‘%n) » (3.1
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where e, ;.(A,) = 648{a, + a, + a5 + a,}? €;, ;,(%) =9{b, + b, + b3}?,

(1 3 2 A
a, =4 — > M M
YT2024 44, 4, AA+ A

st 3 Ak A A,
164 164, 164, 2A(A+4Ay) 24(A+4y) 44204+ 4))

a, =

A, A§+ A2 N Ay A2
4220+ A;) 423 T 164,47 T 43+ 4y)

a ! 1+7+11+ As
T2 AT 8A A 200+ A

Lot 1 1
CT2020 4k, A+ A0
501 Ay, A

st L, T uG )i ) Gt A

and b; = —a,.

Note that in the case 4, = 4, = 4,, ¢;_; (4,, &) = 0.7812 independent of the
value of 4,. In Table 1 below we give e; ;.(4,, &) of (3.1) for selected values of
4, and 4,. Observe that e; , (A4,, %) is not symmetric in 4, and 4,.

Table 1 shows that for fixed 4, e, ;,(A4,, &,) increases in 1, and eventually
stabilizes around 1.12. On the other hand, for fixed 4,, e;, ;,(4,, %,) tends to
zero as A, increases.

The asymptotic distribution of the K, statistic is not normal. For this reason
its performance can not be compared to other tests in terms of Pitman ARE. We
conducted a Monte Carlo simulation study to compare the powers of %, 4, and

Table 1. ARE of 4, w.r.t. &, for the ACBVE distribution of (1.5)

A €;,.01(A4n 57) A, €0.1.1,(An 52)
0.1 0.7812 0.1 0.7812
1 0.9408 1 0.07409

10 1.1108 10 0.00098

20 1.1131 20 0.00024

30 1.1151 30 0.00010

40 1.1165 40 0.00007




220 Emad-Eldin A. A. Aly and S. C. Kochar

Table 2. Monte Carlo Estimates of Powers for the Marshall-Olkin Bivariate Exponential Distribu-
tion with 4, = 0.1, 4, = 10, 20(20)100 and 6 = 0.24,

'11 sn An Kn
10 .1630 1215 1230
20 .1680 .1140 1125
n=10 40 .1565 1285 1185
60 1525 1195 .1090
80 1550 1230 .1085
100 .1635 1170 .1140
10 2250 .1835 .1845
20 .2340 1925 .1885
n=20 40 2170 1825 1755
60 2315 .1705 .1690
80 .2300 .1845 1720
100 .2305 1785 .1820
10 4245 4500 4345
20 4300 4430 4360
n=>50 40 4520 4675 4705
60 4420 4655 4525
80 4435 4735 4690
100 4280 4570 4490
10 .7945 .7290 .8565
20 1345 .7880 8645
n =100 40 .7620 .8005 .8680
60 .7385 .8010 .8750
80 .7295 .7910 .8670
100 .7505 .8105 8745

K,. In this study we employed 2,000 independent random samples of sizes 10,
20, 50 and 100 from the BVE distribution of Marshall and Olkin of (1.4). The
significance level used in this study is @ = 0.05 and the critical values used were
obtained by simulation. Part of this study is reported in Table 2 above in which
2, =0.1,4, =10,20(20)100 and 0 = 0.24,.

Table 2 suggests that for small samples, &, performs better than both 4, and
K,. For large samples, K, is distinctly much better than both %, and 4,. For
moderate samples (n ~ 50), both A4, and K, are slightly more powerful than %,.

In addition to the power results discussed above we have also considered the
case 4, = 0.1, 4, = 10, 20(20)100 and 0 = 0.14,. These results, which are not
reported here, show that the powers of the three tests are more or less the same,
but are significantly lower than their corresponding values of Table 2.

4 Asymptotic Theory

Let the empirical distribution functions H,(-, -), F,(-) and G,(-) be as defined
following (2.12). Define
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L(t,s) = HF'(t), G™'(s)) ,

L,(t,s) = H,((F'(1), G™'(5)) ,

a(t, s) = n'?{L,(t,5) — L(t, 9)} ,

Un(y) = FETH(y), un(y) = n2(U,(9) — ),
Va(y) = GG (y), va(y) = n2(V(y) = y)

and
7n(t’ D, S) = nl/z{An(t’ D, S) - A(t’ P, S)} ’
where A(t, p, s) is as in (2.9) and

4,(t, p, s) = Hy(F'(p + pt), G (5) — PHL(F, ' (1), G (5) — ps,

0<tps<l.

Next, we define two Gaussian processes which will be needed in the sequel (cf.
Csorgo (1984) for more details). A Brownian bridge B(-, *) on [0, 1] x [0, 1] is
a real valued mean zero separable Gaussian process with continuous sample
paths and EB(x,, y,)B(x2, y;) = (x; A X;)(yy A y3) — X1 X291 Y2, 0 <Xy, Xy,
Y1, Y2 < 1. A Brownian Bridge B(-) on [0, 1] is a real valued mean zero separa-
ble Gaussian process with continuous sample paths and EB(x,)B(x,) =
(x; A X3) — x;X,,0 < x4, x, < 1. Note that

Bx, ) ZB(1,x) 2 B(x),0<x<1.

By the Theorem of Tusnady (1977), there exists a sequence of Brownian bridges
{B,(", )}, such that under H,,

sup |a,(t, s) — B,(t, s)| = O(n~"* log? n) . 4.1)

0<t,s<1

Define,

(1) = n"2(F,F7'(t) — 1)

and
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%24(8) = n'*(G,G7}(s) — 5) .

It follows from (4.1),

sup |a;,(f) — B,(t, 1)| = O(n™*2 log? n) 4.2)
0o<t<1

and
sup |a,,(s) — B,(1, s)| = 0(n™*2 log? n) . 4.3)
O0<s<1

By applying the Bahadur-Kiefer result (Bahadur (1966) and Kiefer (1970)) and
by (4.2) and (4.3) we obtain

sup |u,(t) + B,(t, 1)|*= 0(r(n)) , (4.4)
0<t<1

and
sup |v,(s) + B,(1, )| = O(r(n)) , 4.5)
O0<s<1

where r(n) = n~"*(log'? n)(log log n)'*.
The following Theorem is the main result of this section.

Theorem 4.1: Assume that H, holds true and H(-, *) is continuous. Then, there
exists a sequence of Brownian bridges {B,(-, *)}-, such that

sup  17.(6 p,s) — I'(t, p, 5; B,)| = o(1) , (4.6)

0<t,p,s<1

where
I, p,s; B)=I'i(p + pt, s; B) — pI'y(t, s; B)
and

(¢, s; B) = B(t, s) — sB(t, 1) — tB(l, s) . @.7)
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Proof: It is easy to see that

Yty P, S) = V1a(P + P, 5) — PY1a(t, 5) (4.8)
where

Vinlts 8) = 6a(Up(8), V(s) + n'2{L(U,(1), V,(s)) — L(t, 5)} .

Consequently, (4.6) will follow from (4.8) if we show under the conditions of
Theorem 4.1 that

sup [y1alt, ) — Iu(t, 5; B,) = o(1) , (4.9)

0<t,s<1

where I'|(t, s; B) is as in (4.7).
Assume the conditions of Theorem 4.1. To prove (4.9) we note first that

Vinlts 8) = tu(Up(t), V(s)) + sun(t) + to,(s) + n™2u,(t)v,(s) (4.10)

It is well known that

sup |U,(t) — t]| = O(n~"*(log log n)**?) (4.11)
O<t<1

and
sup |V,(s) — s|= 0(n~"*(log log n)'?) . (4.12)
O0<s<1

By (4.10)—(4.12) we obtain

SUp 71(t, 5) — 0 (Up(2), Vo(5)) — 51,(2) — t0,(5)| = O(n™"? log log n) .
0<t,s<1
(4.13)

Let {B,(-, *)}2-, be as in (4.1). By (4.1), we obtain

sup |, (U (1), V,(s)) = By(U, (@), Vals)| = O(n™"? log? m) .
1

0<t,s<
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By (4.11) and (4.12) and the almost sure continuity of B,(-, -) for each n, we
obtain

sup lay(Uy(1), V(s)) — By(t, 5)| = o(1) . (4.14)

0<t,s<1

By (4.4), (4.5), (4.13) and (4.14) we get (4.9). This completes the proof of
Theorem 4.1.

Proof of Theorem 2.1: Assume the conditions of Theorem 4.1. Recall that
11
.(s) = [ | 44(t, p, s)dtdp
00
and, under H,,
11
/54n8,(s) = /54 | [ v(t, p, s)dtdp .
00
Consequently, by (4.6), we have
11
J54ns,(s) 5. /54 | | I(t, p, s; B)dedp (4.15)
00

where I'(t, p, s; B) is as in (4.6) and B(-, ‘) is a Brownian bridge.
It can be shown that

341 [ TG, 5; Bydedp = -—\/§Z<%B(l,s)
00

+ i {% + log(1 — t)} {B(t, s) — sB(t, 1)}dt>
0o
£ B(s)

where B(-)is a Brownian bridge. This result combined with (4.15) implies (2.14).
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