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Testing Whether F is More IFR than G

By I. A. Ahmad® and S. C. Kochar?

Abstract: A distribution F is said to be “more IFR” than another distribution G if G~ Fis convex.
When F(0) = G(0) =0, the problem of testing Hy : F(x) = G(6x) for some 6 > 0 and x > 0, against
the alternative H4 : F is more IFR than G, is considered in this paper. Both cases, when G is com-
pletely specified (one-sample case) and when it is not specified but a random sample form it is avail-
able (two-sample case) are considered. The proposed tests are based on U-statistics. The asymptotic
relative efficiency of the tests are compared with several other tests and the test statistics remain
asymptotically normal under certain dependency assumptions.

Key Words and Phrases: U-statistic, increasing failure rate, unbiasedness, asymptotic relative ef-
ficiency, robustness, strong mixing processes.

1 Introduction

Let F be the family of absolutely continuous distributions such that F(0) = 0. For any
FEF,let F=1-F denote the corresponding survival function and let f denote the
probability density function (pdf) corresponding to F. The failure rate function of F is
re(x) = f(x)/F(x), F(x) > 0. F is said to be an increasing failure rate (IFR) distribution
if 7 is nondecreasing. The exponential distribution G(x) = e™*, x = 0 has the property
that it has a constant failure rate, that is, it does not age (deteriorate) with time. Thus
in the IFR sense, we compare the aging of a distribution F with that of the exponen-
tial. This leads to the comparison of the aging of two arbitrary life distributions F and
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G in F via a partial ordering called the convex ordering. We give this comparison in the
next definition.

Definition 1.1: F is said to be convex-ordered with respect to G, written as Fé G if
G~ F(x) is a convex function for x € [0, o). .

Denoting the densities of F and G by f and g, we find that F < G implies that the
generalized failure rate

fex)
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is nondecreasing in x. Or equivalently, rp(F ' (u))/rg(G~'(u)), the ratio of failure
rates at quantiles of the same order u is nondecreasing in w. If either of the above
happens, we say that F is “more IFR than G”.

Note that F is IFR if and only if Fis convex ordered with respect to the negative
exponential distribution G(x) =e™*, x > 0. In general, if F and G are related by the
relation F(x) = G(x*), for some > 1 and for all x >0, then G~ F(x) = x® is convex
in x for a > 1 and hence F <G. This relation implies, for examples, that the members
of the Weibull family of distributions are ordered in the above sense according to the
shape parameter for the same value of the scale parameter.

It is easy to see that F <G if and only if F(x)=G(6x) for some 6 > 0. Thus this
partial ordering is scale invariant.

This concept of convex ordering was introduced by Van Zwet (1964) where
moment inequalities were developed and applications to Statistics were shown. Barlow
and Proschan (1981) also contains some results on this ordering. Chandra and Singpur-
wala (1981) have shown that F <G implies that the Lorenz curve of G dominates the
Lorenz curve of F. In Economics, it is important, to compare the concentration of two
distributions.

The purpose of this investigation is to provide a test statistic for testing Hy : F £G
versus H, : F <G. We present test statistics in both the situations when G is known
and when G is unknown and a random sample is available from it. We shall call these
two cases the one- and the two-sample cases. The one-sample problem was considered
by Barlow and Doksum (1972) for general G. While when G is exponential, this prob-
lem was considered by Bickel and Doksum (1969), Proschan and Pyke (1967), Ahmad
(1975), and Deshpande and Kochar (1983) among others. The two-sample problem
has not been discussed to the best of our knowledge. However, tests for a somewhat
weaker ordering namely ‘“NBU ordering ** have been proposed by Hollander, Park and
Proschan (1982) and Gerlach (1986) for the two-sample problem.

The following lemma sets the basis for defining our test statistics.
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Lemma 1.1: Let X, X,, and X3 (Y, Y,,and Y3) bg three independent copies of a
random variable with distribution function F(G). If F <G then for any a € (0, 1),

P[X] >aX2 +(1"Q)X3]>P[Y1 >QY2 +(1_(X)Y3]. (11)
c
Proof: Note that F <G is equivalent to
F(ox + (1 —a)y) = GlaG 'F(x) + (1 —)GLF(»)), (12)

foralla € (0, 1) and all x, y > 0. But (1.2) implies that

f Of F(ax + (1 —a)y)dF(x)dF(y)
> Of ({,, GlaG~'F(x) + (1 —a)G ' F(»)1dF(x)dF(y)
= f ({m Glou + (1 —@)v)dG(u)dG(v), (1.3)
for all « € (0, 1). Now (1.3) is equivalent to (1.1). O

From the above lemma, we take as a measure of departure from H, the following
1(F, G)= ({ ({ F(ax + (1~ )y)dF(x)dF(»)

_of ({ Glax + (1 —)y)dG(x)dG(y). (1.4)

Note that under Hy, v(F, G) = 0 and under H, ,y(F, G)> 0.

In Section 2, we deal with the one-sample case (G specified except for the scale
parameter). A test statistic is introduced and the value of null asymptotic variance is
obtained when G is exponential. The test is shown to be unbiased and consistent. In
Section 3, we treat the two-sample problem. A consistent estimator of the asymptotic
null variance of the test statistic is given. Section 4 is devoted to asymptotic relative
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efficiency (ARE) comparisons. The newly proposed tests have been compared with the
existing tests. Finally, in Section 5 the results concerning the limiting distribution of
the test statistic are extended to the case when there is dependence of strong mixing

type within the samples.

2 The One-Sample Problem

Let X4, ”"cX"‘ be a random sample from a distribution F. We wish to test Hy : F£G
vs. Hy : F<G where G is a specified distribution up to the scale parameter. Recall

that

Y(F, G)=84,F ~84,6,
where
ba,r =PplX) >aX; + (1 —a)X;]
and
ba,6 =Pc[Y1>aY; +(1 —0)Y3)] =8¢

We estimate 8, g. Let

(a known quantity).

1 if x; >ax, +(1—a)x3

¢*(xy,x5,x3) =
0 otherwise

Set the symmetric version of ¢* as follows:

1
2 ¢*(xy, x5, X)),

Oy, x2,x3) = ¢
p

(2.1

(2.2)
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where the summation is taken over all permutations of the integers 1, 2 and 3. Thus
we can estimate §,,r unbiasedly by the U-statistic:

1
Ua,m(/X)= (’131) % ¢(Xi1’Xi2aXi3)’ (23)

where the summation is over all combinations of the integers (i, i5, i3) out of the set
of integers (1,2, ..., m). Large values of U, ,,(X) are significant for testing H, against
H 4 . The proof of the following theorem follows from the general theory of U-statistics,
see Hoeffding (1948) or Puri and Sen (1971).

Theorem 2.1: The asymptotic distribution of /m (Ua,m(X)—84,6) as m—> oo, is
normal with mean y(F, G) and variance ag'p =9&,(F), where

£1(F) = Ep(Yi(X))—83.F (2.4)
with
Yy (xy) = Ep[d(xy, X2, X3)] (2.5)

Note that under Hy, 84 =84, and 05 f = 05  but under Hy, 84 g > 84 . In the
case G(x) =e~M*, x >0,\ >0, it can be shown that

Sac =t D@+ 1)), (2.6)
where @ =1 —a and

ae

LI W T
20—1 2a-1 a+tl a+1 2

V(x)= 2.7

4 1
l—e ™ —2xe ¥ 42| ifa=z
[ e e 36 | I «a 3

1+

W | -

—x/& —ax —&x}

W | -
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Thus
r1+a4*2a3—4a2+5a+2 2(aa@* +aa+1)
Q+a)2+ta)aa+1l) (atl1)@*+at+l)eatat+l)
X 2@ +aa+1) 8a3a® + 10026 —o® —a* +5aa+ 3 #1
=4 - — it a#—=
oG @+ 1) +a+1)aata+l) (a+ 1?@+1)2Qa+ 1)Qa+1) 2
248
, if a==
55125 2

Clearly, aé'c = oé'c. The following table gives the values of 03"(; for some values of a:

a 0.01 0.10 0.20 0.30 0.40 0.50

fen

QO

(2175)10~8(1268)107° (2864)107 (3868)107° (4356)107° (4499)10~°

Thus for testing the null hypothesis that F is negative exponential versus that it is IFR,
the critical values of the test statistic v/m {(Ugm(X) —[(a + 1)@+ D! }/0q,¢ can
be approximated by the variates of the standard normal distribution for large samples.

Note also that the above procedure can be used in problems not handled before
such as testing F' is Weibull versus that F' is more IFR than the Weibull. We show below
that these proposed tests are unbiased for testing Hy against H 4 .

st
Theorem 2.2: Let F% G. Then Uy, (X) 2 Uy, (Y) where X is a random sample from
Fand Y is a random sample from G of the same size.

Proof: Let YF=G 'F(X;), i=1,...,m. Then (Y¥,..,¥2) (Y, ..., Y,). Next,
suppose that X; <aX, + (1 —a)X3, then

G 'FX) <G 'FlaX, + (1 —a)X3)<aG 'F(X|)+(1 —a)G 'F(X,). (29)

Thus X; <aX, +(1 —a)X; implies that Y{ <aY¥ + (1 —a)Y3, and hence ¢*(x,,
Since, U, ,(X) is an average of ¢*’s, it follows that Uy, ,, (X) = Uy m(Y). O
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It follows immediately from the above result that the test statistic based on U, ,,(X)
is unbiased for testing Hy versus H4 . In particular the IFR test is unbiased.

Since 84 p > 84 under Hy and &, g =8, ¢ under Hy, it follows that (c.f.
Theorem 2.1 above) the U, ,,(X) test is consistent for the above problem.

3 The Two-Sample Problem

We now consider the two-sample problem when G is completely unknown and inde-
pendent random samples X,,...,X,, and Y,,..., Y, are available from F and, G,
respectively. Let N =m + n. The test we propose is based on the U-statistic estimator
Ton = Ugm(X) = Ugn(Y) of 8,  — 84, Large values of T, y being significant. The
proof of the following theorem is immediate form the theory of U-statistics.

Theorem 3.1: The asymptotic distribution of \/I—V_[TQ'N =84 Fr 104l as N> in

m
such a way that-ﬁ - p,0<p <1,is normal with mean 0 and variance

0z = 9[£,(F)/p + £,(G)/(1 - p)), (3.1)

where &, as given in Theorem 2.1.

Under Hy, the limiting distribution of VN Ty n is normal with mean zero and
variance 9¢,(F,)/p(1 —p), where Fy is the common (but unspecified) distribution.
Note that while the asymptotic null mean is O independent of Fy, the asymptotic null
variance does depend on Fy via &;(F,) and thus must be estimated. We will do the
more general situation and estimate o2 consistently and unbiasedly. Since §(F)=
Var [¥3(X)] we estimate it by

B =(m—1)! 51 (81 (X)) = Unm (X)P2, (32)
where
. _ 1\ -1
wl(x,-)=(’"21) IE 6K, X Xo). (33)
i<k

jok#i
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Similarly we estimate £,(G) by £, (G).

Clearly, from the general theory of U-statistics, §1(F) and EX(G) are consistent
estimators of £, (F) and &, (G) respectively (see Puri and Sen 1971). Thus a consistent
(and unbiased) estimate of 02 is given by

625 = INIE, (F)/m + £,(G)/n]. (3.4)

Thus by Slutsky’s lemma, it follows that /' [Ty n —Y(F, G)]/Gq,n is asymptotically
standard normal. Under Hy, y(F, G) = 0. Thus we reject H, in favor of H, if /N
To,N/0q,N > 2o From this and the fact that §, p > 8, ¢ under H, it follows that the
test is consistent for testing H, against H .

Unlike the one-sample case the two-sample test is only asymptotically unbiased
as shown in the next theorem.

Theorem 3.2: The two-sample test VN Ty N10q,n >z is asymptotically unbiased for
testing Hy : F e against Hy : F <G.

Proof: Observe that

P[NX/ZTQ,N(};,}V >z] =P[N1/2{Ta,N— Ba.F + 604,0 1= 6a,Nz _Nllz{aa.F - 6a,G }]

(3.5)

Also observe that 6, p > 6, ¢ under the alternative H, and that G, y > 0, <eo in
probability as N = o=. Under Hy, (3.5) is equal to the significance level and under H 4
it is at least equal to the significance level. O

4 Asymptotic Relative Efficiencies

One-Sample-Problem: For the purpose of Pitman asymptotic relative efficiency

c
comparisons, we consider a sequence of alternatives {Fj,, }, where 0; =0, +\/—~’
My

¢ >0 is an arbitrary constant and 6, corresponds to G, under Hy,.
We consider the following special families of distributions:

1. The Makeham distribution:

Fi(x,0)=1-exp[-{x+0(x+e*-1)}], x=0
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2. The linear failure rate distribution,

0x?
X +——

2

Fay(x,0)=1-exp

‘, x=20

The case § = 04 =0, corresponds to the null hypothesis with G(x) = 1 — exp (—x).

For this one-sample for general G, a class of tests was proposed by Barlow and
Doksum (1972). Let

YR { 71
Hml(—’) = 2 gG ‘( - )’(Xf,m_Xj—x,m),

j=1
Wim =H—1(i)/H;xl(1),
m

where X ,, is the j-th order statistic in a sample of size m from F and X, ,, = 0. If
G(x)=1—exp (—x) for x >0, then

i m
Wi.m =m~! El (m-j+ 1)(Xj,m —Xj—l,m)/.zl Xj,m7
= j=

]

is the “scaled time on test” until the i-th ordered observation.
They have proposed tests based on statistics of the form

M3

Bm('])=m_1 . J[wi,m]

1

n
-

where J is an increasing function. We consider here a member of this class correspond-

ing to J(x) =x and when G(x) =1 —exp(~x); that is we consider the “scaled cumula-
tive time on test statistic”

m
Kp = ‘Zl (m=j+ D)X m —Xj_1,m)ImX
]:

for efficiency comparisons. This test is asymptotically optimal for testing exponential-
lity against Makeham distribution F, .




54 I. A. Ahmad and S. C. Kochar

Table 1. ARE of Uy, W.I.t. Ky, test

0.5 0.9 0.99
Fy 0.7401 0.8665 0.9830
Fy 0.7227 0.7610 0.8150

Table 1 gives the asymptotic relative efficiencies of the U, ,, test against the scaled
cumulative total on test statistic for the above mentioned distributions fora=0.5,0.9
and 0.99.

Observe that Uy, pm = Ug,m- 1t is clear from the above table that U, ,, statistics
with a values near one (or zero) are more efficient.

Two-Sample Problem: We consider a sequence of sample sizes my and n; such that
my /Ny = p and ny /Ny > 1 —p as k > . We are not aware of any other test for this
problem. Hence for efficiency comparisons, we compare T, p test with the one
proposed by Hollander, Park and Proschan (1982) for testing whether F is more NBU
than G. Observe that the set of distributions contained in this new alternative contains
distributions which are more IFR since F’ 2 G=>F NEU G. Their test is based on the
studentized version of the statistic

SN =JIm(X) = Jn(Y)

where J,,,(X) is the U-statistic associated with the kernel A(xq, x5, x3) =1 if x; > x,
+x3 and O otherwise. Remember that J,,(X) is nothing other than the Hollander and
Proschan (1972) test statistic for testing exponentiality against NBU.

Here also, T, y = T5 . Table 2 gives the Pitman asymptotic relative efficiencies
of the T, y test w.r.t. Sy test.

Table 2. ARE’s of Ty v W.r.t. Sy

0.5 0.9 0.99

Fq 0.9261 1.0831 1.2288
Fy 1.606 1.6913 1.8112
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5 Extension to Dependent Samples

In this section, we prove that U, ,,(X) (and thus U, ,(Y)) remains asymptotically
normal when X, ..., X,, are no longer independent, instead X, ..., X}, is assumed to
have been taken from a double-infinite sequence of random variables satisfying the fol-
lowing definition:

Definition 5.1: For any —~o<a <b < oo, let 0% denote the sigma field generated by
Xg, .., Xp. The sequence {X;}”. is said to be strong mixing if for any events 4 € 02
and B € 05 ,, we have

|P(AB) — P(A)P(B)| <a(n), (.1
where a(-) is a function defined on the integers and is decreasing to 0.

Definition 5.2: The sequence {X;}”. is said to be strictly stationary if the distribu-
tion of {X,+1, ..., Xz+n} is independent of a for any n.

The following result gives the conditions under which the asymptotic normality of
VM (Uy,m(X) = 84,F) is obtained and gives the formula of the variance.

Theorem 5.1: Assume that {X ,-}"_"“, is a strictly stationary strongly mixing sequence of
random variables such that 2 na(n) <oe. Then \/m (Uy m(X) — 84 ) is asympto-
n=1

tically normal with mean O and variance 02 = 9 73,, p» Where
Tap =Var ViX) +2 T Cov(¥1(1), ¥i(Xisr)),

with Y, (cy) = Ep{6(x1, X3, X3)}.

Before proving this theorem, let us briefly discuss its implications and relation
with results in the literature. First observe that for both the one-sample and the two-
sample problems discussed in Sections 2 and 3 above, the test statistics remain asymp-
totically normal even when we sample from a strongly mixing process. Also, it shall be
clear from the proof that similar argument can be said about other U-statistics based
test procedures such as Hollander and Proschan (1972) test for NBU, Ahmad (1975)
test for IFR and Hollander, Park, and Proschan (1982) test for F is more NBU than G.
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Note also that if in (5.1) we require the stronger bound P(4)a(n), then the sequence
{X;} is called uniform mixing. In this case and assuming that a(n) = 0(n=* 1) for
some 0 <7 <1, Theorem 5.1°s conclusion reduces to Theorem 1 of Yoshihara (1976).
Thus our theorem is an extension of his result to strong mixing with weaker condi-
tion T na(n) < oo, Our method of proof is also different.

We shall only sketch the proof of Theorem 5.1 and refer the reader to Ahmad and
Kochar (1988) for further details.

Sketch of Proof of Theorem 5.1

Note that U, ,,(X) is an estimate of &, p =P(X; > aX, + (1 —a)X3) and that

Ua,m(X) and ¥, ,,,(X) have same limiting distribution, where V, ,,,(X) = f f Fp(ax,
+ (1 =x)x3) dFp(x1)dFp (x2). Let We, 1 = f f F(cx(xl+(1—a)x2)dF(x1)dFm(x2)

The method of proof is to note that \/m (Wa,m — 84 p) is asymptotically normal with
mean O and variance 02 and that mEWe,m — Uo‘,,,,)2 -0 as m >, Recall that
Od(xy, X2, x3) =1if x{ >axy + (1 —a)x, and writing that 7(x 1, X5, X3) = o0& (xq, X5, X3)
—E¢X(xq, x5, x3) we get

m{E(Voc.m - am)z} m_s E E 2 E 2 E ET(XII’XIZ’XI3)T(X]1’ ]2! ]3)
iy i i3 J1 j2 73 (5 2)
But |ET(X,-1,X,2,X,3)T( i1 ,-Z,X,-3)l<I+II+III+IV+ V, where
I =1E¢*(Xiy, Xig, Xig)0* (X, Xjy, Xj3) = ES*(Xiy, Xiy, Xig)ES* (X, Xy, Xj3)I,

= 1BV (X9 (X, Xjy, Xj3) ~ EV 1 (XDEQ* (X}, Xjy, Xj3)l,
1= |E¢*(Xiy, Xiy, Xig)¥1 (X)) = EQ*(Xiy, Xy, Xig)EY1(X))1,

IV=EY; (X)¥ 1 (X;) - 82 ¢l
and

V= ‘E¢*(Xi1,X12, Xi3 aFl |E¢ i1’ ]27 ) 6OLFI
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Now, be Lemma 2 of Billingsley (1968) p. 171, it follows that (see Ahmad and Kochar
1988), I <2a(max [|i; —jil, liy —j2l, li3 —j3!]). Note also that II, III, IV all have
similar bounds as I. Thus

TEEZZSZ(A+...+IV)<K,,, say, (5.3)

i1 i 0372173
where

Knp=1l6m 2 Z Za(li -j;)+8m 3L % 2 a(max [li; —jil, lia =2l ]).
i1 j1 iy iy j1#iy ja#iz

But 2 X a(li; —j1))=0(m), and X2 X 2 a(max[liy —jil, lip —j2 1] =
it iy g j1#iy ja#ia
0(m?) (see Ahmad and Kochar 1988). Thus k,,, = 0(~!). Finally we have

!Ed):;(Xilv Xi2’ Xi3)_5a,F‘ <‘x(lll —i2l)+a(il —l3l) (54)

Thus m 522 T T |Eo3(X;,, X1y, Xiy) =8, | <2m Y2 T a(m) +2m=32 Z ma(m)
i1 i3 13
— 0 as m - oo. The proof is complete. a
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