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Abstract. In the competing risks literature, one usually compares whether two risks are equal or whether one
is “more serious.” In this paper, we propose tests for the equality of two competing risks against an ordered
alternative specified by their sub-survival functions. These tests are naturally developed as extensions of those
based on hazard rates and cumulative incidence functions. We note that the interpretation of the new test results
is more direct compared to the situation when the hypotheses are framed in terms of their cumulative incidence
functions. The proposed tests are of the Kolmogrov—Smirnov type, based on maximum differences between sub-
survival functions. Our simulation studies indicate that they are excellent competitors of the existing tests, that
are based mainly on differences between cumulative incidence functions. A numerical example will demonstrate
the advantages of the proposed tests.
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1. Introduction

The competing risks problem involves subjects or experimental units exposed to multiple

risks, but where the actual failure (or death) is attributable to only one cause. In this paper,

we examine the case of exactly two risks. Let the notional lifetimes of a unit under these

two risks be denoted by random variabksandY, respectively, that are nonnegative. In

general X andY need not be independent. This structure yields observébles) where

T = min(X, Y) is the time of failure and = 2 — |1 (X < Y) is the cause of failure. The

| (A) denotes the indicator function of the evéntWe assume thd& (X = Y) = 0 and that

lifetimes are continuous type random variables. Thus, for each subject we obEesye
Thecause specific hazard rat@rresponding to the" cause is defined by

hi(t) = lim 1P[t<T t+At, §=1|T>1]
I()_AI—>OAt —= < ) _| -

i = 1,2. The overall hazard rate is given hy(t) = hy(t) + ha(t). When the causes

of failure are independenl (t) is the ordinary hazard rate corresponding to the marginal
distribution of failure times from thé" cause. Prentice et al. (1978) emphasize that only
those quantities which can be expressed in terms of cause specific hazard rates are estimable
and can be estimated from the competing risks data even if the risks are dependent. In this
paper, all the quantities we are interested in are functionals of cause specific hazard rates
and hence identifiability will not be a problem.
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For the competing risks problem, itis often of interest to distinguish between the following
alternatives: (i) the two risks are equal, and (ii) one risk is greater than the other. In the
literature, such comparisons have been made in terms of cause specific hazard rates and
cumulative incidencésub-distribution) functionsF;(t) = P[T <t,§ =i],i = 1,2
In this paper, we advocate the usesob-survival functionsF; (t) = P[T > t,§ = i],

i = 1,2 for making such comparisons. Using sub-survival functions allows for a more
direct interpretations of hypotheses than using cumulative incidence functions does.

Let Sr denote the survival function df. Then the cumulative incidence functions and
the sub-survival functions can be expressed in terms of the cause specific hazard rates by
the relations,

t 00
RO = [ huswdn Fo= [ hwswd (1)
0 t
fori =1, 2.
Based on a random samy§, §;), j = 1,...,non (T, §), we consider the problem of

testing the null hypothesis given by,

Ho: Fi(t) = Fa(t), t =0, @
against the alternative,

Hi Fat) < RB(t), t=0, &)

with strict inequality for some.
The alternativeH; can also be expressed as

P6=1|T>t]<P[s=2|T>t], t=>0.

In this form it has the following interpretation: Given that a unit has survived up tottime
the conditional probability of its failing in the future from cause 2iisformlygreater than
that from cause 1. Thud, indicates riskY being “more serious” than riskK in some sense.
Also we note that even though the sub-survival functibnand F, may not be expecteal
priori to be equal, except under some special situations (Aly, Kochar and McKeague, 1994),
it is the natural choice of null hypothesis for the ordered alternafiveSimilarly, the null
hypothesis is that of equality in the two-sample survival analysis problem for testing the
alternative whether survival in one group is better than survival in another group.

Also note thatH is equivalent toH/: hi(t) = hy(t) for all t as well as toHg: Fi(t) =
Fo(t) for all t. Hy is implied by the more stringent alternative

Ha: hy(t) < hy(®), t=0,

with strict inequality for somé. However, it is possible that the cause specific hazard rates
cross each other, but their survival functions are ordered. An example of this isXvhen
andY are independent wit)X having exponential distribution with hazard rat® @ndY
having Weibull distribution with shape parameter 2 and scale parameter one.
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Aly, Kochar and McKeague (1994) and Sun and Tiwari (1995) considered the problem
of testing the null hypothesidy against the alternative

Hat Fi(t) = Fa(t), t =0,

and with strict inequality for some

While H; is also implied byH 5, H; andH, are not necessarily equivalent. The alternative
H, does not seem to have the same natural interpretation that the alteddathees. It
follows from the discussion below that the alternatideis also somewhat more stringent
thanH,.

Consider the case wheX andY are independentvith distribution functionsF and
G, respectively. LefF andG be the corresponding survival functions. In this case the
cause specific hazard rates are identical to the hazard rates corresponding to the marginal
distributions of the random variableésandY; and the cumulative incidence functions and
the sub-survival functions can be expressed as

F1(X) / G dF(u), Fxx) = / F(u)dG(u);
0 0

Fix) = /wﬁ(u)dF(u), Ifz(x)zfocf(u)dG(u).

Now suppose thaX is stochastically greater thafh(X Szt Y). Thatis,F(x) > G(x) for
all x > 0. This implies

Fi(x) = / CWdFW) < / FudFw < / F) dGu) = F2x),
0

0 0

for x > 0. The last inequality follows because the functBigu) | (0 < u < X) is

nonincreasing i and X Szt Y. Thus in this cas& Sit Y implies H,. But, in general, the
alternativeH; may not be implied by this constraint as the funct®fu) | (x < u < co)
is not monotone i. However, as discussed above, a sufficient conditiotfoto hold is
that the hazard rate of is smaller than that of.

Clearly there are situations where analysis based on sub-survival functions is more mean-
ingful and revealing than analysis based on cumulative incidence functions. The two ap-
proaches, however, address different aspects of the competing risks problem. Itis plausible
that in some cases the cumulative incidence functions cross but their sub-survival functions
are ordered (as in the case of the data set considered later in this paper) and vice versa.

Several tests are available in the literature for testing the equality of competing risks and
the relevant references can be found in the review paper by Kochar (1995). Gray (1988)
proposed a class af-sample tests for comparing the cumulative incidence function of
one risk overc different populations. The corresponding two-sample problem has been
studied by Lin (1997). But to the best of our knowledge, we are not aware of any test
designed specifically for testingy againstH; in terms of sub-survival functions. In this
paper we propose new Kolmogrov-Smirnov type tests for this problem based on maximum
differences between the two estimated sub-survival functions. These tests are similar in



88 CARRIERE AND KOCHAR

spirit to the tests of Aly, Kochar and McKeague (1994) which were based on the maximum
differences between the empirical cumulative incidence functions.

In the next section we introduce the test statistic for the case of uncensored data and give
its exact and asymptotic distributions. In Section 3, we extend our test to the case when the
data are randomly censored on the right. Section 4 is devoted to power comparisons. In
Section 5, we analyze a data set using the procedures developed in this paper. Concluding
remarks are given in the last section.

2. Tests for Uncensored Data

We test the null hypothesldy against the alternativid; on theuncensore@ompeting risks
data{(T;, §;), j = 1,..., n} for n independent and identical units.
Let

y(t) = Fa(t) — Fr(). 4

Note thaty (t) = 0 under the null hypothesis, but undéy, y(t) > 0, fort > 0 and with
a strict inequality for some. We base our test on the statistic

DIn = sup Vn(t)»

O<t<oo

whereyn(t) = Fan(t) — Fin(®) andFin(t) = 1 31 i{8) =i, T > t} is the empirical
sub-survival function for causei = 1, 2. Positive large values dd;,, provide evidence
in favor of H;. The statistidD7, is similar to the statistic

Din = sup [Fan(t) — Fin(1)]
O<t<oo
proposed by Aly, Kochar and McKeague (1994) for testing against the alteritivdere
Fin(t) is the empirical sub-distribution function of th® cause.
Let Ty < ... < T be the ordered failure times and &}, j = 1,...,n be the
corresponding causes of failures. Then the stati3fjccan be expressed as

1 N
Di.=max—-i1(n—j)—2 Vkt = max Zi/n
b= gei{n-p-2 3w - macay

where

Vi — 1 if § corresponding td, is 1,
K= 10 otherwise

Zy =041+ +nn, Zn=0,andnp = 1 -2V, fork =1,...,n. AsunderHp, T and
8 are independent (cf. Kochar and Proschan, 1991)7risl a symmetric random walk. It
follows that the null distribution oD7,, is the same aB1, and is given by

1/ n
PIND, =K = 51 (o) K=0.1om.
2
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Its asymptotic null distribution is

P[v/nD;j, > x] — P [ sup W(t) > x:| =2(1— ®(x)), x>0,
O<t<1
where{W(t), t > 0} is a standard Brownian motion addis the standard normal distribu-
tion function.
An alternative approach would be to base a test on an estimator of the following average
value ofy (.),

o0 1
yA:/O y®OdFr(t) =P[61=2T > To] — 5.

where(T;, §;), j = 1, 2 are two independent copies OF, §) and Fr is the distribution
function of T. A U -statistic estimator of this parametes leads to the test statistic

n
U= (R =DI{s =2},
j=1
whereR; is the rank ofT; amongTy, ..., T,. This statistidJ; was initially proposed and
studied by Bagai, Deshpaadind Kochar (1989a) for comparing the hazard rates of two
competing risks. They also proposed another stafistie- Z?:l(n -R+DI¢ =2
for testing against stochastic ordering between two independent competing risks (1989b).
It can be shown thdtl; is equivalent to the U-statistic estimator of

o0 1
A[aw—awwﬁwzpmzznsm—i

an average difference between the sub-distribution functions.

Yip and Lam (1992, 1993) proposed a class of asymptotically distribution-free tests for
testing the equality of the hazard ratesrafependentompeting risks. Lam (1998) subse-
qguently proved that the asymptotic null distributions of these statistics remain unchanged
even when the risks are dependent. They used the counting processes approach to study
the asymptotic properties of their tests. Their class includes the asymptotically equivalent
versions of thaJ; andU, tests as special cases.

When an ordered alternative is unsuitable, it can be of interest td§egtainst the general
alternative:Fy(t) # F,(t) forsome. Inthatcaseitis natural to use the Kolmogrov-Smirnov
test statistic

Dn = sup|yn(t)[.
t>0

UnderHy, v/nD, converges in distribution to SHB<1 IW(X)|. This gives an omnibus test,
consistent againstrbitrary departures frontg.

3. Tests for Censored Data

We now modify the new test for the censored data. An item is censored, if its actual
observation is unavailable before failure dueXmr Y. Denote the censoring time 6y
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and its survival function bya:. Assume that:(t) > 0 for allt, and thaiC is independent
of X andY. Under right-censoring we observe.i.d. copies,(T;,§;), j = 1,...,n, of
T = min(T, C) and$ = 8¢ wheree = | (T < C).

The product limit (PL) estimator o¥; is given by

. n £[il 1{T,<t}
So =[], (1_ n—i +1>

wheref(l) < ... < 'f(n) are the ordered; values andkg) is the concomitant of theth
order statistic, that igyi; = ¢; if T, = T;. If the largest observation is uncensored, the PL
estimator at that point equals zero. If the largest observation is censored, the PL estimator
can never equal zero and is undefined beyond the largest observation.

We see fromEg.(1) that in the case of censored data, a natural estimatby, is

T

i(t) = / Sr(u—) d(Ai(u)),
t

where$; is the product-limit estimator of; and[\j is the Aalen estimator (1978) of the
cumulative cause specific hazard rate funciigiit) = fot h; (u) du, given by

Aity= Y 16 =)/R.
j: Ti<t
HereR, = #{k: Ty > T;} is the size of the risk set at ting —.

A suitable modification of the functiop(t) = Fa(t) — Fi(t) for the censored case is

yr) = / Sc(u—)Y2d(F2 — Fp)(u)
t

=/ Sr(u—)Sc(U—)Y2d(Ap — Ar)(u),
t

which coincides withy when there is no censoring. For a justification of this, see Aly,
Kochar and McKeague (1994). An obvious choice/gf an estimator of *(t) is

yi(t) = / & U= & U2 d(Az — Apu),
t

where&: is the PL estimator of:. Note that the quantitr (u) S (u)Y/2 vanishes al ),
the largest observation. Positive large values of the test statistic

D3, = sup yy (1), (5)
O<t<oo
are significant for testingfly againstH;j.
The D3, test is asymptotically distribution-free with the same limiting null distribution
as in the uncensored case. The proof follows on the lines of Aly, Kochar and McKeague
(1994) and is omitted.
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Table 1.Estimated sizes and powers of the tests for
the LIFR distribution at asymptotic levels of 5%.

Test 0
0.0 0.5 1.5 2.5 3.5

Uncensored
Dq 4.67 19.81 58.23 82.61 92.27
D 443 2578 71.04 90.61 96.89
Uy 492 31.36 7937 9435 98.36

Lightly censored (26—-31%)

D3 3.85 11.74 36.82 60.15 76.46
D3 413 15.67 47.05 7194 85.80
Uy 437 1794 5122 75.66 88.80

Heavily censored (54—59%)

D3 3.36 568 1573 28.32 42.50
D3 4.10 753 20.41 36.44 5137
ur 3.24 546 17.96 3243 47.69

The statistidJ; can also be easily modified to handle the case of randomly censored data
asUj, = j0°° ya)d(l— S (t)). The asymptotic null distribution of/nU; is N(0, 1/3)
and its large values are significant for testing agalihst

It may be noted that in case the censoring distribution has support on a finite interval
[0, 7], then the null and alternatives are really regarding the quaﬁfily. (WSr(udu =
Fi (t) — Fi (¢) rather than the sub-survival functions. While this would not affect the validity
of the tests, caution should be exercised in the interpretation of the results.

4. Efficiency and Power Comparisons

The alternativeH  implies bothH; andH,. However, we are not aware of any tests designed
specifically for comparing the sub-survival functions of competing riskisinwhile H,

has many tests available. For some alternatives belongiHg {@nd hence tdd; andHy),

we performed a simulation study to compare the powers ofXtheD3 andU; tests with

the D1, D, andU; tests.

In the first study we consider the case whérandY are independent witiX having
standard exponential distribution aichaving linearly increasing failure rate (LIFR) dis-
tribution with hazard ratd,(x) = (1 + 6x). The case# = 0 corresponds to the null
hypothesidHy and values of > 0 correspond to the alternativ, (and henced; andH,).

The censoring was taken to be exponential with parameters 1 and 3, corresponding to
“light” and “heavy” censoring (about 28% and 56% censored). We used asymptotic critical
values at 5% level. Table 1 gives the estimated powers of the various tests based on
10,000 samples, each of size 100 for this alternative. Although not reported in the Table,
the estimated powers of thé, and the sign tests in thencensoredtase and at the above
0 values were found to be rather non-competitive. These values for the two tests are
4,93 11.92,29.72,55.85, 62.60 and 439, 22.27, 63.52, 86.33, 94.18, respectively.
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At n = 100, the empirical sizes of all tests under consideration were a little too conser-
vative compared to the nominal 5% with an exceptiorDgfandU; for the uncensored
case. ThaJ; (Uj) test that seemed to excel in the uncensored (light censored) case did
not do as well in the heavily censored case. The general finding in this case ;that
(U7) is the best in uncensored (lightly censored) case, wibjemproves the empirical
size and power considerably in the heavily censored case. But the results using the new
testsD; and D3 were generally improved from the previous teBtsand D3 in all cases.

Power improvement was rather substantial in the uncensored and the lightly censored cases,
especially.

These simulations results are not surprising in the light of the findings of Yip and Lam
(1992, 1993). They observed that in this case, the differences in the upper tails of the
distributions are more relevant. The newly proposed tests put more weight on late failures.

Next we consider the case wheéN, Y) follows the absolutely continuous bivariate ex-
ponential (ACBVE) distribution of Block and Basu (1974) with density

A1A(A2+2o) e Mx—(G2tr0y jf x < y

f(X, y) _ { A1tA2

AzkA(l/\ﬁrzx\w e Ry—(tioX jf x > y
where(io, A1, A2) are parameters arid= Ag + A1 + Ag.

In this case the cause specific hazard rétgs) = AjA/(A1+ A2), ] = 1,2 are pro-
portional, and the alternative hypothed¢g, H; and H, are equivalent ta.; < A,. The
parametekg controls the degree of dependence betwéamdY, with independence if and
only if Ao = 0. We set,; = 1 and considered various higher values.gttorresponding
to increasing departures froldy. Again the censoring was taken to be exponential with
parameters 1 and 3, corresponding to “light” and “heavy” censoring (about 22% and 45%
censored). We used asymptotic critical values at 5%. Again the simulation results reported
in Table 2 are based on 10,000 samples each of size 100. Only the resajs=at are
reported as there is only marginal effect of this parameter on the power functions of the
tests. Note that the case = 1.0 corresponds to the null hypothesis. We used the exact null
mean and variance in the asymptotic normal approximatidh ofmprovements using the
new test in empirical sizes and powers are not evident. With an exception 0f ttest,
which was notably poor, the other tests performed quite similarly.

It is evident from these studies that for the LIFR alternative, Bije(D3) test performs
better than thé®; (D3) test, while for the ACBVE distribution, they perform almost equally
well. This shows thatthB] (D3) andU; (U;) tests are good competitors of tBe (D3) and
U, tests. Whereas the tests based on cumulative distribution functions give more importance
to early failures, the newly proposed tests are more suitable when the differences in the upper
tails of the distributions are more prominent.

5. Hoel's Data Revisited

We revisit the mortality data set given in Hoel (1972) and also analyzed earlier by Aly,
Kochar and McKeague (1994). A radiation dose of 300 rads were given to 99 RMF strain
male mice at 5-6 weeks of age and they were kept in a conventional laboratory environment.
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Table 2. Estimated sizes and powers of
tests for the ACBVE distribution with
Ao = 1 at asymptotic levels of 5%.

Test A2
1.0 15 2.0 2.5

Uncensored
D1 485 59.59 95.08 99.66
D* 442 58.07 94.36 99.56
Uz 484 52.65 90.47 98.51

Lightly censored (18-25%)

D3 4.02 50.16 89.66 98.84
419 4794 88.23 98.51
ur 436 39.98 78.04 94.60

Heavily censored (40-50%)

D3 3.07 3535 76.34 9451
343 3296 72.07 92.20
ur 3.05 2238 52.69 75.96

The cause of death was recorded as one of thymic lymphoma, reticulum cell sarcoma, and
other causes. Similarly in Aly, Kochar and McKeague (1994), we took “other causes” as
censoring (39% were in this category), and used the two types of cancer mortality as the two
causes of failure for comparison purposes. TRusndF, denote the sub-survival functions

of the risks lymphoma and sarcoma, respectively. (Note that Aly, Kochar and McKeague
(1994) label the two risks the other way around). We assume that the two diseases are lethal
and independent of other causes of death . We do not need to assume that the two diseases
are independent of each other. In Figure 1 and Figure 2, we plot the cumulative incidence
functions and the sub-survival functions of the two risks. It is clear from these figures that
for this data set the two cumulative incidence functions cross at about 500 days, but their
sub-survival functions are ordered.

Figure 3 plots the function/ny. Observe that/ny; (t) first increases and then de-
creases, but it remaimsnnegative This plot indicates that the two cause specific hazard
rates are not ordered; otherwise, it should have been monotone. The grafity,bit)
appears to favor the alternativy that the two sub-survival functions are ordered. For
testingHo againstH; we obtained a highly significant value gfnDj, = 4.8058 with
a p-value of.1541 x 10~° (the value ofU; for this data is 2.6252 with a correspond-
ing p-value of .0086). BotlD3, andU; tests rejectH in favor of the alternativeH;
that the sub-survival function of the risk of death from sarcoma is greater than that from
lymphoma.

Aly, Kochar and McKeague (1994) reported thah D3, = 3.69 with p < .0003. It was
concluded that the cumulative incidence for lymphoma was larger than that for sarcoma
before 500 days; this was reversed after 500 days. On the other hand, our test indicates
that the sub-survival function for sarcoma is always larger than that for lymphoma, sup-
porting Hj.
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Figure 1. Cumulative incidence of lymphoma_) and sarcoma (- - -).

6. Concluding Remarks

In this paper we have considered the competing risks problem and have shown that it is
easier to interpret hypotheses expressed in terms of sub-survival functions rather than in
terms of cumulative incidence functions. We have proposed new Kolmogrov-Smirnov type
tests for the problem of testing the equality of two competing risks against the alternative
that their sub-survival functions are ordered. These tests are similar to the ones proposed
by Aly, Kochar and McKeague (1994) for comparing the cumulative incidence functions
of two competing risks. The tests proposed in this paper give more weight to late failures
which typically occur in the upper tails of the distributions and where the differences in
the distributions are more important. We conclude that the tests proposed in this paper
are good competitors of the existing ones. The new tests are expected to perform better
in situations where the differences in the sub-survival functions are more prominent. The
two approaches to the competing risks problem based on the differences of the cumulative
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Figure 2. Sub-survival functions of lymphoma_) and sarcoma (- - -).

incidence functions and the differences of the sub-survival functions are complementary to
each other, addressing to different aspects of the problem.
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