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Abstract. In the competing risks literature, one usually compares whether two risks are equal or whether one
is “more serious.” In this paper, we propose tests for the equality of two competing risks against an ordered
alternative specified by their sub-survival functions. These tests are naturally developed as extensions of those
based on hazard rates and cumulative incidence functions. We note that the interpretation of the new test results
is more direct compared to the situation when the hypotheses are framed in terms of their cumulative incidence
functions. The proposed tests are of the Kolmogrov–Smirnov type, based on maximum differences between sub-
survival functions. Our simulation studies indicate that they are excellent competitors of the existing tests, that
are based mainly on differences between cumulative incidence functions. A numerical example will demonstrate
the advantages of the proposed tests.
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1. Introduction

The competing risks problem involves subjects or experimental units exposed to multiple
risks, but where the actual failure (or death) is attributable to only one cause. In this paper,
we examine the case of exactly two risks. Let the notional lifetimes of a unit under these
two risks be denoted by random variablesX andY, respectively, that are nonnegative. In
general,X andY need not be independent. This structure yields observables(T, δ) where
T = min(X,Y) is the time of failure andδ = 2− I (X ≤ Y) is the cause of failure. The
I (A) denotes the indicator function of the eventA. We assume thatP(X = Y) = 0 and that
lifetimes are continuous type random variables. Thus, for each subject we observe(T, δ).

Thecause specific hazard ratecorresponding to thei th cause is defined by

hi (t) = lim
1t→0

1

1t
P[t ≤ T < t +1t, δ = i | T ≥ t ]

i = 1,2. The overall hazard rate is given byhT (t) = h1(t) + h2(t). When the causes
of failure are independent,hi (t) is the ordinary hazard rate corresponding to the marginal
distribution of failure times from thei th cause. Prentice et al. (1978) emphasize that only
those quantities which can be expressed in terms of cause specific hazard rates are estimable
and can be estimated from the competing risks data even if the risks are dependent. In this
paper, all the quantities we are interested in are functionals of cause specific hazard rates
and hence identifiability will not be a problem.
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For the competing risks problem, it is often of interest to distinguish between the following
alternatives: (i) the two risks are equal, and (ii) one risk is greater than the other. In the
literature, such comparisons have been made in terms of cause specific hazard rates and
cumulative incidence(sub-distribution) functions,Fi (t) = P[T ≤ t, δ = i ], i = 1,2.
In this paper, we advocate the use ofsub-survival functions, F̃i (t) = P[T > t, δ = i ],
i = 1,2 for making such comparisons. Using sub-survival functions allows for a more
direct interpretations of hypotheses than using cumulative incidence functions does.

Let ST denote the survival function ofT . Then the cumulative incidence functions and
the sub-survival functions can be expressed in terms of the cause specific hazard rates by
the relations,

Fi (t) =
∫ t

0
hi (u)ST (u)du, F̃i (t) =

∫ ∞
t

hi (u)ST (u)du, (1)

for i = 1,2.
Based on a random sample(Tj , δj ), j = 1, . . . ,n on (T, δ), we consider the problem of

testing the null hypothesis given by,

H0: F̃1(t) = F̃2(t), t ≥ 0, (2)

against the alternative,

H1: F̃1(t) ≤ F̃2(t), t ≥ 0, (3)

with strict inequality for somet .
The alternativeH1 can also be expressed as

P[δ = 1 | T > t ] ≤ P[δ = 2 | T > t ], t ≥ 0.

In this form it has the following interpretation: Given that a unit has survived up to timet ,
the conditional probability of its failing in the future from cause 2 isuniformlygreater than
that from cause 1. ThusH1 indicates riskY being “more serious” than riskX in some sense.
Also we note that even though the sub-survival functionsF̃1 andF̃2 may not be expecteda
priori to be equal, except under some special situations (Aly, Kochar and McKeague, 1994),
it is the natural choice of null hypothesis for the ordered alternativeH1. Similarly, the null
hypothesis is that of equality in the two-sample survival analysis problem for testing the
alternative whether survival in one group is better than survival in another group.

Also note thatH0 is equivalent toH ′0: h1(t) = h2(t) for all t as well as toH ′′0 : F1(t) =
F2(t) for all t . H1 is implied by the more stringent alternative

HA: h1(t) ≤ h2(t), t ≥ 0,

with strict inequality for somet . However, it is possible that the cause specific hazard rates
cross each other, but their survival functions are ordered. An example of this is whenX
andY are independent withX having exponential distribution with hazard rate 0.5 andY
having Weibull distribution with shape parameter 2 and scale parameter one.
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Aly, Kochar and McKeague (1994) and Sun and Tiwari (1995) considered the problem
of testing the null hypothesisH0 against the alternative

H2: F1(t) ≤ F2(t), t ≥ 0,

and with strict inequality for somet .
While H2 is also implied byHA, H1 andH2 are not necessarily equivalent. The alternative

H2 does not seem to have the same natural interpretation that the alternativeH1 has. It
follows from the discussion below that the alternativeH1 is also somewhat more stringent
thanH2.

Consider the case whenX and Y are independentwith distribution functionsF and
G, respectively. LetF andG be the corresponding survival functions. In this case the
cause specific hazard rates are identical to the hazard rates corresponding to the marginal
distributions of the random variablesX andY; and the cumulative incidence functions and
the sub-survival functions can be expressed as

F1(x) =
∫ x

0
G(u)d F(u), F2(x) =

∫ x

0
F(u)dG(u);

F̃1(x) =
∫ ∞

x
G(u)d F(u), F̃2(x) =

∫ ∞
x

F(u)dG(u).

Now suppose thatX is stochastically greater thanY (X
stº Y). That is,F(x) ≥ G(x) for

all x ≥ 0. This implies

F1(x) =
∫ x

0
G(u)d F(u) ≤

∫ x

0
F(u)d F(u) ≤

∫ x

0
F(u)dG(u) = F2(x),

for x ≥ 0. The last inequality follows because the functionF(u) I (0 ≤ u ≤ x) is

nonincreasing inu andX
stº Y. Thus in this caseX

stº Y implies H2. But, in general, the
alternativeH1 may not be implied by this constraint as the functionF(u) I (x ≤ u ≤ ∞)
is not monotone inu. However, as discussed above, a sufficient condition forH1 to hold is
that the hazard rate ofX is smaller than that ofY.

Clearly there are situations where analysis based on sub-survival functions is more mean-
ingful and revealing than analysis based on cumulative incidence functions. The two ap-
proaches, however, address different aspects of the competing risks problem. It is plausible
that in some cases the cumulative incidence functions cross but their sub-survival functions
are ordered (as in the case of the data set considered later in this paper) and vice versa.

Several tests are available in the literature for testing the equality of competing risks and
the relevant references can be found in the review paper by Kochar (1995). Gray (1988)
proposed a class ofc-sample tests for comparing the cumulative incidence function of
one risk overc different populations. The corresponding two-sample problem has been
studied by Lin (1997). But to the best of our knowledge, we are not aware of any test
designed specifically for testingH0 againstH1 in terms of sub-survival functions. In this
paper we propose new Kolmogrov-Smirnov type tests for this problem based on maximum
differences between the two estimated sub-survival functions. These tests are similar in
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spirit to the tests of Aly, Kochar and McKeague (1994) which were based on the maximum
differences between the empirical cumulative incidence functions.

In the next section we introduce the test statistic for the case of uncensored data and give
its exact and asymptotic distributions. In Section 3, we extend our test to the case when the
data are randomly censored on the right. Section 4 is devoted to power comparisons. In
Section 5, we analyze a data set using the procedures developed in this paper. Concluding
remarks are given in the last section.

2. Tests for Uncensored Data

We test the null hypothesisH0 against the alternativeH1 on theuncensoredcompeting risks
data{(Tj , δj ), j = 1, . . . ,n} for n independent and identical units.

Let

γ (t) = F̃2(t)− F̃1(t). (4)

Note thatγ (t) ≡ 0 under the null hypothesis, but underH1, γ (t) ≥ 0, for t ≥ 0 and with
a strict inequality for somet . We base our test on the statistic

D?
1n = sup

0≤t<∞
γn(t),

whereγn(t) = F̃2n(t) − F̃1n(t) and F̃in(t) = n−1∑N
j=1 i {δj = i, Tj > t} is the empirical

sub-survival function for causei , i = 1,2. Positive large values ofD?
1n provide evidence

in favor of H1. The statisticD?
1n is similar to the statistic

D1n = sup
0≤t<∞

[F2n(t)− F1n(t)]

proposed by Aly, Kochar and McKeague (1994) for testing against the alternativeH2. Here
Fin(t) is the empirical sub-distribution function of thei th cause.

Let T(1) ≤ . . . ≤ T(n) be the ordered failure times and letδ[ j ] , j = 1, . . . ,n be the
corresponding causes of failures. Then the statisticD?

1n can be expressed as

D?
1n = max

0≤ j≤n

1

n

{
(n− j )− 2

N∑
k= j+1

Vk

}
= max

0≤ j≤n
Zj /n

where

Vk =
{

1 if δ corresponding toT(k) is 1,
0 otherwise;

Zj = ηj+1 + · · · + ηn, Zn = 0, andηk = 1− 2Vk, for k = 1, . . . ,n. As underH0, T and
δ are independent (cf. Kochar and Proschan, 1991) andZj is a symmetric random walk. It
follows that the null distribution ofD?

1n is the same asD1n and is given by

P[nD?
1n = k] = 1

2n

(
n

[ n−k
2 ]

)
, k = 0,1, . . . ,n.
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Its asymptotic null distribution is

P[
√

nD?
1n > x] → P

[
sup

0<t<1
W(t) > x

]
= 2(1−8(x)), x ≥ 0,

where{W(t), t ≥ 0} is a standard Brownian motion and8 is the standard normal distribu-
tion function.

An alternative approach would be to base a test on an estimator of the following average
value ofγ (.),

γA =
∫ ∞

0
γ (t)d FT (t) = P[δ1 = 2, T1 > T2] − 1

2
,

where(Tj , δj ), j = 1,2 are two independent copies of(T, δ) and FT is the distribution
function ofT . A U -statistic estimator of this parameterγA leads to the test statistic

U1 =
n∑

j=1

(Rj − 1)I {δj = 2},

whereRj is the rank ofTj amongT1, . . . , Tn. This statisticU1 was initially proposed and
studied by Bagai, Deshpand´e and Kochar (1989a) for comparing the hazard rates of two
competing risks. They also proposed another statisticU2 =

∑n
j=1(n− Rj + 1)I (δj = 2)

for testing against stochastic ordering between two independent competing risks (1989b).
It can be shown thatU2 is equivalent to the U-statistic estimator of∫ ∞

0
[F2(x)− F1(x)]d FT (x) = P[δ1 = 2, T1 ≤ T2] − 1

2
,

an average difference between the sub-distribution functions.
Yip and Lam (1992, 1993) proposed a class of asymptotically distribution-free tests for

testing the equality of the hazard rates ofindependentcompeting risks. Lam (1998) subse-
quently proved that the asymptotic null distributions of these statistics remain unchanged
even when the risks are dependent. They used the counting processes approach to study
the asymptotic properties of their tests. Their class includes the asymptotically equivalent
versions of theU1 andU2 tests as special cases.

When an ordered alternative is unsuitable, it can be of interest to testH0 against the general
alternative:F̃1(t) 6= F̃2(t) for somet . In that case it is natural to use the Kolmogrov-Smirnov
test statistic

D̄n = sup
t≥0
|γn(t)|.

UnderH0,
√

nD̄n converges in distribution to sup0≤x≤1 |W(x)|. This gives an omnibus test,
consistent againstarbitrary departures fromH0.

3. Tests for Censored Data

We now modify the new test for the censored data. An item is censored, if its actual
observation is unavailable before failure due toX or Y. Denote the censoring time byC
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and its survival function bySC. Assume thatSC(t) > 0 for all t , and thatC is independent
of X andY. Under right-censoring we observen i.i.d. copies,(T̃j , δ̃j ), j = 1, . . . ,n, of
T̃ = min(T,C) andδ̃ = δε whereε = I (T ≤ C).

The product limit (PL) estimator ofST is given by

ŜT (t) =
∏n

i=1

(
1− ε[i ]

n− i + 1

)I {T̃(i )≤t}

whereT̃(1) ≤ · · · ≤ T̃(n) are the ordered̃Ti values andε[i ] is the concomitant of thei th
order statistic, that is,ε[i ] = εj if T̃(i ) = T̃j . If the largest observation is uncensored, the PL
estimator at that point equals zero. If the largest observation is censored, the PL estimator
can never equal zero and is undefined beyond the largest observation.

We see fromEq.(1) that in the case of censored data, a natural estimator ofF̃i , is

ˆ̃Fi (t) =
∫ ∞

t
ŜT (u−)d(3̂i (u)),

whereŜT is the product-limit estimator ofST and3̂j is the Aalen estimator (1978) of the
cumulative cause specific hazard rate function3i (t) =

∫ t
0 hi (u)du, given by

3̂i (t) =
∑

j : T̃j≤t

I (δ̃j = i )/Rj .

HereRj = #{k: T̃k ≥ T̃j } is the size of the risk set at timẽTj−.
A suitable modification of the functionγ (t) = F̃2(t)− F̃1(t) for the censored case is

γ ∗(t) =
∫ ∞

t
SC(u−)1/2d(F̃2− F̃1)(u)

=
∫ ∞

t
ST (u−)SC(u−)1/2d(32−31)(u),

which coincides withγ when there is no censoring. For a justification of this, see Aly,
Kochar and McKeague (1994). An obvious choice ofγ ∗n , an estimator ofγ ∗(t) is

γ ∗n (t) =
∫ ∞

t
ŜT (u−)ŜC(u−)1/2 d(3̂2− 3̂1)(u),

whereŜC is the PL estimator ofSC. Note that the quantityST (u)SC(u)1/2 vanishes at̃T(n),
the largest observation. Positive large values of the test statistic

D?
3n = sup

0≤t<∞
γ ∗n (t), (5)

are significant for testingH0 againstH1.
The D?

3n test is asymptotically distribution-free with the same limiting null distribution
as in the uncensored case. The proof follows on the lines of Aly, Kochar and McKeague
(1994) and is omitted.
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Table 1.Estimated sizes and powers of the tests for
the LIFR distribution at asymptotic levels of 5%.

Test θ

0.0 0.5 1.5 2.5 3.5

Uncensored

D1 4.67 19.81 58.23 82.61 92.27
D?

1 4.43 25.78 71.04 90.61 96.89
U1 4.92 31.36 79.37 94.35 98.36

Lightly censored (26–31%)

D3 3.85 11.74 36.82 60.15 76.46
D?

3 4.13 15.67 47.05 71.94 85.80
U ?

1 4.37 17.94 51.22 75.66 88.80

Heavily censored (54–59%)

D3 3.36 5.68 15.73 28.32 42.50
D?

3 4.10 7.53 20.41 36.44 51.37
U ?

1 3.24 5.46 17.96 32.43 47.69

The statisticU1 can also be easily modified to handle the case of randomly censored data
asU ?

1n =
∫∞

0 γ ∗n (t)d(1− ŜT (t)). The asymptotic null distribution of
√

nU?
1n is N(0, 1/3)

and its large values are significant for testing againstH1.
It may be noted that in case the censoring distribution has support on a finite interval

[0, τ ], then the null and alternatives are really regarding the quantity
∫ τ

t hi (u)ST (u)du =
F̃i (t)− F̃i (τ ) rather than the sub-survival functions. While this would not affect the validity
of the tests, caution should be exercised in the interpretation of the results.

4. Efficiency and Power Comparisons

The alternativeHA implies bothH1 andH2. However, we are not aware of any tests designed
specifically for comparing the sub-survival functions of competing risks inH1, while H2

has many tests available. For some alternatives belonging toHA (and hence toH1 andH2),
we performed a simulation study to compare the powers of theD∗1, D∗3 andU ∗1 tests with
the D1, D2 andU1 tests.

In the first study we consider the case whenX andY are independent withX having
standard exponential distribution andY having linearly increasing failure rate (LIFR) dis-
tribution with hazard ratehθ (x) = (1 + θx). The caseθ = 0 corresponds to the null
hypothesisH0 and values ofθ > 0 correspond to the alternativeHA (and henceH1 andH2).

The censoring was taken to be exponential with parameters 1 and 3, corresponding to
“light” and “heavy” censoring (about 28% and 56% censored). We used asymptotic critical
values at 5% level. Table 1 gives the estimated powers of the various tests based on
10,000 samples, each of size 100 for this alternative. Although not reported in the Table,
the estimated powers of theU2 and the sign tests in theuncensoredcase and at the above
θ values were found to be rather non-competitive. These values for the two tests are
4.93,11.92,29.72,55.85,62.60 and 4.39,22.27,63.52,86.33,94.18, respectively.



92 CARRIERE AND KOCHAR

At n = 100, the empirical sizes of all tests under consideration were a little too conser-
vative compared to the nominal 5% with an exception ofD1 andU1 for the uncensored
case. TheU1 (U ?

1) test that seemed to excel in the uncensored (light censored) case did
not do as well in the heavily censored case. The general finding in this case is thatU1

(U ?
1) is the best in uncensored (lightly censored) case, whileD?

3 improves the empirical
size and power considerably in the heavily censored case. But the results using the new
testsD?

1 andD?
3 were generally improved from the previous testsD1 andD3 in all cases.

Power improvement was rather substantial in the uncensored and the lightly censored cases,
especially.

These simulations results are not surprising in the light of the findings of Yip and Lam
(1992, 1993). They observed that in this case, the differences in the upper tails of the
distributions are more relevant. The newly proposed tests put more weight on late failures.

Next we consider the case when(X,Y) follows the absolutely continuous bivariate ex-
ponential (ACBVE) distribution of Block and Basu (1974) with density

f (x, y) =
{ λ1λ(λ2+λ0)

λ1+λ2
e−λ1x−(λ2+λ0)y if x ≤ y

λ2λ(λ1+λ0)

λ1+λ2
e−λ2y−(λ1+λ0)x if x > y

where(λ0, λ1, λ2) are parameters andλ = λ0+ λ1+ λ2.
In this case the cause specific hazard rateshj (t) = λjλ/(λ1+ λ2), j = 1,2 are pro-

portional, and the alternative hypothesesHA, H1 and H2 are equivalent toλ1 < λ2. The
parameterλ0 controls the degree of dependence betweenX andY, with independence if and
only if λ0 = 0. We setλ1 = 1 and considered various higher values ofλ2 corresponding
to increasing departures fromH0. Again the censoring was taken to be exponential with
parameters 1 and 3, corresponding to “light” and “heavy” censoring (about 22% and 45%
censored). We used asymptotic critical values at 5%. Again the simulation results reported
in Table 2 are based on 10,000 samples each of size 100. Only the results forλ0 = 1 are
reported as there is only marginal effect of this parameter on the power functions of the
tests. Note that the caseλ2 = 1.0 corresponds to the null hypothesis. We used the exact null
mean and variance in the asymptotic normal approximation ofU1. Improvements using the
new test in empirical sizes and powers are not evident. With an exception of theU1 test,
which was notably poor, the other tests performed quite similarly.

It is evident from these studies that for the LIFR alternative, theD?
1 (D?

3) test performs
better than theD1 (D3) test, while for the ACBVE distribution, they perform almost equally
well. This shows that theD?

1 (D?
3) andU1 (U ?

1) tests are good competitors of theD1 (D3) and
U2 tests. Whereas the tests based on cumulative distribution functions give more importance
to early failures, the newly proposed tests are more suitable when the differences in the upper
tails of the distributions are more prominent.

5. Hoel’s Data Revisited

We revisit the mortality data set given in Hoel (1972) and also analyzed earlier by Aly,
Kochar and McKeague (1994). A radiation dose of 300 rads were given to 99 RMF strain
male mice at 5–6 weeks of age and they were kept in a conventional laboratory environment.
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Table 2. Estimated sizes and powers of
tests for the ACBVE distribution with
λ0 = 1 at asymptotic levels of 5%.

Test λ2
1.0 1.5 2.0 2.5

Uncensored

D1 4.85 59.59 95.08 99.66
D?

1 4.42 58.07 94.36 99.56
U1 4.84 52.65 90.47 98.51

Lightly censored (18–25%)

D3 4.02 50.16 89.66 98.84
D?

3 4.19 47.94 88.23 98.51
U ?

1 4.36 39.98 78.04 94.60

Heavily censored (40–50%)

D3 3.07 35.35 76.34 94.51
D?

3 3.43 32.96 72.07 92.20
U ?

1 3.05 22.38 52.69 75.96

The cause of death was recorded as one of thymic lymphoma, reticulum cell sarcoma, and
other causes. Similarly in Aly, Kochar and McKeague (1994), we took “other causes” as
censoring (39% were in this category), and used the two types of cancer mortality as the two
causes of failure for comparison purposes. ThusF̃1 andF̃2 denote the sub-survival functions
of the risks lymphoma and sarcoma, respectively. (Note that Aly, Kochar and McKeague
(1994) label the two risks the other way around). We assume that the two diseases are lethal
and independent of other causes of death . We do not need to assume that the two diseases
are independent of each other. In Figure 1 and Figure 2, we plot the cumulative incidence
functions and the sub-survival functions of the two risks. It is clear from these figures that
for this data set the two cumulative incidence functions cross at about 500 days, but their
sub-survival functions are ordered.

Figure 3 plots the function
√

nγ ∗n . Observe that
√

nγ ∗n (t) first increases and then de-
creases, but it remainsnonnegative. This plot indicates that the two cause specific hazard
rates are not ordered; otherwise, it should have been monotone. The graph of

√
nγ ∗n (t)

appears to favor the alternativeH1 that the two sub-survival functions are ordered. For
testing H0 againstH1 we obtained a highly significant value of

√
nD?

3n = 4.8058 with
a p-value of.1541× 10−5 (the value ofU ?

1 for this data is 2.6252 with a correspond-
ing p-value of .0086). BothD?

3n and U1 tests rejectH0 in favor of the alternativeH1

that the sub-survival function of the risk of death from sarcoma is greater than that from
lymphoma.

Aly, Kochar and McKeague (1994) reported that
√

nD3n = 3.69 with p < .0003. It was
concluded that the cumulative incidence for lymphoma was larger than that for sarcoma
before 500 days; this was reversed after 500 days. On the other hand, our test indicates
that the sub-survival function for sarcoma is always larger than that for lymphoma, sup-
porting H1.
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Figure 1. Cumulative incidence of lymphoma( ) and sarcoma (- - -).

6. Concluding Remarks

In this paper we have considered the competing risks problem and have shown that it is
easier to interpret hypotheses expressed in terms of sub-survival functions rather than in
terms of cumulative incidence functions. We have proposed new Kolmogrov-Smirnov type
tests for the problem of testing the equality of two competing risks against the alternative
that their sub-survival functions are ordered. These tests are similar to the ones proposed
by Aly, Kochar and McKeague (1994) for comparing the cumulative incidence functions
of two competing risks. The tests proposed in this paper give more weight to late failures
which typically occur in the upper tails of the distributions and where the differences in
the distributions are more important. We conclude that the tests proposed in this paper
are good competitors of the existing ones. The new tests are expected to perform better
in situations where the differences in the sub-survival functions are more prominent. The
two approaches to the competing risks problem based on the differences of the cumulative
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Figure 2. Sub-survival functions of lymphoma( ) and sarcoma (- - -).

incidence functions and the differences of the sub-survival functions are complementary to
each other, addressing to different aspects of the problem.
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Figure 3. Plot of normalized gamma∗.
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