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Abstract

If X is a life distribution with .nite mean then its mean residual life function (MRLF) is
de.ned by M (x)=E[X −x|X ¿x]. It has been found to be a very intuitive way of describing the
aging process. Suppose that M1 and M2 are two MRLFs, e.g., those corresponding to the control
and the experimental groups in a clinical trial. It may be reasonable to assume that the remaining
life expectancy for the experimental group is higher than that of the control group at all times
in the future, i.e., M1(x)6M2(x) for all x. Randomness of data will frequently show reversals
of this order restriction in the empirical observations. In this paper we propose estimators of
M1 and M2 subject to this order restriction. They are shown to be strongly uniformly consistent
and asymptotically unbiased. We have also developed the weak convergence theory for these
estimators. Simulations seem to indicate that, even when M1=M2, both of the restricted estimators
improve on the empirical (unrestricted) estimators in terms of mean squared error, uniformly at
all quantiles, and for a variety of distributions. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The mean residual life (MRL) of a unit or a subject at age x is the average remaining
life among those population members who have survived until time x. If lifelengths of
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the population are described by a random variable X with survival function (s.f.) S(x)
and a .nite mean, then the MRL function (MRLF) is de.ned by

M (x) = E[X − x|X ¿x] =

∫∞
x S(u) du
S(x)

I [S(x)¿ 0]: (1.1)

An MRLF is right continuous with left hand limits, and has the same set of disconti-
nuities as the s.f., except that a MRLF is always continuous at the right endpoint of
the support of the s.f., if .nite. A distribution is characterized by its MRLF by the
relation

S(x) =
M (0)
M (x)

e−
∫ x

0 (1=M (u)) duI [M (x)¿ 0]: (1.2)

In some cases, particularly in health sciences and actuarial sciences, the MRLF gives
a more intuitive picture of survival or aging than the s.f. or the hazard rate function
r(x) = f(x)=S(x), where f(x) is the density.

Let X and Y be random variables with .nite means representing the lifetimes of
two populations with s.f.s S1 and S2 and MRLFs M1 and M2, respectively. These
could be patients undergoing two diKerent treatments or the times to recurrence of
cancer after the patients have been treated with diKerent kinds of therapies. In the
industrial engineering context, X and Y could represent the lifetimes of two diKerent
brands of an appliance. Suppose that we are confronted with the problem of comparing
two populations to see which one has longer life. A naive approach would be to just
compare the two means, i.e., M1(0) and M2(0). Rather than basing the decision on two
single points, one could compare X and Y under a stochastic ordering (SO) restriction,
i.e., S1(x)6 (¿)S2(x) for all x. However, both of these measures compare the two
systems when they are new. They do not say anything about their survival as time
passes and the systems age. One way to do this would be to compare X and Y under
a uniformly stochastic ordering (USO) restriction, i.e., under SO of the conditional
distributions of X and Y given survival till time x. This is a very strong ordering
restriction. A more meaningful and intuitive way of comparing X and Y would be to
compare their MRLFs. The review article by Guess and Proschan (1988) gives a nice
summary of the theory of MRLF.

There is a substantial literature on the nonparametric maximum likelihood estimators
(NPMLEs) on two distributions under SO (Brunk et al., 1966; Huang and Praestgaard,
1996) and USO (Dykstra et al., 1991; Rojo and Samaniego, 1991), and on a pro-
jection type estimator for SO (Rojo and Ma, 1996; Rojo, 1995) and USO (Rojo and
Samaniego, 1993; Mukerjee, 1996; Arcones and Samaniego, 2000), the latter often
proving to be superior to the NPMLEs.

Yang (1978) studied the properties of an empirical estimator of the MRLF. Hall
and Wellner (1979) and CsNorgő and Zitikis (1996) have extended some of her re-
sults. In this paper we propose estimators of M1 and M2 subject to the constraint
M1(x)6 (¿)M2(x) for all x when M2 is known (1-sample problem) and unknown
(2-sample problem). The estimators could be extended to the case where the order
restriction holds only on an interval [t1; t2). These are simple intuitive projection type
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estimators, paralleled after estimators that have proven to be excellent in the stochastic
and uniform stochastic ordering cases. Ebrahimi (1993) has also considered these prob-
lems with the restriction M1¿M2 on [t1; t2] only, and provided an excellent real-life
example in his Figs. 1 and 2 (p. 414). His estimators are similar to ours, but have to be
slightly modi.ed to assure that they are indeed MRLFs, and we show how this could
be done. We provide a rigorous proof of asymptotic unbiasedness, since Ebrahimi’s
(1993) arguments regarding this property were largely heuristic. We also derive the
weak convergence of our estimators that provide con.dence bands for our estimators.
We have conducted extensive simulations under a variety of conditions, and some of
these results are presented in Section 4. As is to be expected, for small sample sizes
the estimators are biased; however, the mean squared errors (MSEs) of both estima-
tors appear to be uniformly smaller than those of the empiricals. The same has been
observed for the SO and USO cases. These outcomes are intriguing and worthy of
further study. We should also mention that Berger et al. (1988) have considered the
problem of testing M16M2, but they do not consider the estimation problem.

In Section 2 we describe our estimators. In Section 3 we prove strong uniform
consistency and asymptotic unbiasedness of our estimators. In Section 4 we provide
some of our simulation results. In Section 5 we consider the asymptotic distributions
and the weak convergence of our estimators, and provide formulas for simultaneous
con.dence intervals and con.dence bands, and provide an example. In Section 6 we
make some concluding remarks.

2. The estimators

Suppose that X and Y are nonnegative random variables (r.v.s) representing life-
times with s.f.s S1 and S2, MRLFs M1 and M2, and right endpoints of their supports,
if .nite, b1 and b2, respectively. Assume that we have independent random samples of
sizes n1 and n2 from S1 and S2, respectively. Let Ŝ1 and Ŝ2 denote the usual empir-
ical estimators of the s.f.s, and de.ne the empirical estimators of M1 and M2 (Yang,
1978) by

M̂ i(x) =

∫∞
x Ŝ i(u) du

Ŝi(x)
I(Ŝ i(x)¿ 0); i = 1; 2; (2.1)

where the dependence on sample sizes has been suppressed to simplify the notation.
Note that M̂ i is a right-continuous function with upward jumps only and a derivative
equal to −1 wherever it exists.

2.1. The 1-sample case

Suppose that M2 is known and M1(x)6M2(x) ∀x. Then our estimator of M1 is
given by

M∗
1 (x) = M̂ 1(x) ∧M2(x): (2.2)
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Fig. 1. Illustration of M∗
1 ; M̂ 1 and M2.

Now suppose that the order restriction is M1(x)6M2(x) on [t1; t2) only. Since an
MRLF cannot have a jump down, in fact, M ′(x)¿− 1 where it exists for any MRLF,
M , we have to be careful in de.ning M∗

1 (x) for x¡ t1. We propose the estimator
given by

M∗
1 (x) =




M̂ 1(x); x¡ t1 and M̂ 1(t1)6M2(t1);

M̂ 1(x); x¡ c and M̂ 1(t1)¿M2(t1);

M2(t1) + (t1 − x); c6 x¡ t1 and M̂ 1(t1)¿M2(t1);

M̂ 1(x) ∧M2(x); t16 x¡ t2;

M̂ 1(x); x¿ t2;

(2.3)

where c= max{Xi : M̂ 1(X−
i )6M2(t1) + (t1 − Xi)}; and 0 if no such i exists. By this

de.nition, if M̂ 1(t1)¿M2(t1) then M∗
1 is extended to the left by a straight line with a

slope of −1 from M2(t1) until this line is above M̂ 1(X−
i ) for the .rst time for some

i, or all the way to 0 if no such i exists (see Fig. 1).
For the reverse order restriction, the estimators are the obvious parallels to those in

(2.2) and (2.3) with the reverse ordering, noting that, if M̂ 1(t2)¡M2(t2), then

M∗
1 (x) =

{
M2(t2) − (x − t2); t26 x¡c;

M̂ 2(x); x¿ c;

where c=min{Xi: M̂ 1(Xi)¿M2(t2)− (Xi− t2)}; and c= t2 +M2(t2) if no such i exists.
Note that c = t2 +M2(t2) implies M̂ 1(c) = 0.

To check if the various estimators are indeed MRLFs, we use the fact that (Hall and
Wellner, 1981) a function M is a MRLF of a nondegenerate life distribution if and
only if (i) M : [0;∞)→[0;∞), (ii) M (0)¿ 0, (iii) if for some x0 ¡∞, M (x−0 ) = 0,
then M (x) = 0 ∀x¿ x0; and

∫∞
0 1=m(x) dx = ∞ if such an x0 does not exist, (iv)

M (x) + x is nondecreasing in x, and (v) M is right continuous. The .rst three con-
ditions are easily veri.ed in all cases. Condition (iv) follows from the fact that for
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any two nondecreasing functions, f and g, f ∧ g and f ∨ g are also nondecreasing,
and from the way M∗

1 was de.ned on [t ¡ t1) when M16M2 and on [t¿ t2) when
M1¿M2. Condition (v) is clearly satis.ed on [t1; t2) by the right-continuity of M̂ 1 and
M2. When M1¿M2, this condition is also satis.ed on [0; c) and on [t2;∞) by right
continuity of M̂ 1, and on [c; t1) by continuity of M∗

1 . A similar argument applies when
M1¿M2.

2.2. The 2-sample case

The motivation for this estimation stems from the NPMLEs for two stochastically
ordered unknown s.f.s where one .rst estimates the common s.f. by pooling both
samples, and then estimates each s.f. under the proper ordering restriction as a 1-sample
problem, using the respective empirical s.f. and this common s.f. We give formulas
only for the case where M16M2 everywhere; extension to the case of order restriction
on an interval only can be done exactly as in the 1-sample case since our estimation
procedure reduces to two separate 1-sample cases.

For any .xed but arbitrary n1 and n2, de.ne Ŝ = (n1Ŝ1 + n2Ŝ2)=(n1 + n2) to be the
estimator of the common s.f. S=(n1S1 +n2S2)=(n1 +n2) by pooling both samples. The
MRLF of S is given by

M (x) =

∫∞
x [n1S1(u) + n2S2(u)] du

n1S1(x) + n2S2(x)
I [x¡b2]

=
n1S1(x)M1(x) + n2S2(x)M2(x)

n1S1(x) + n2S2(x)
I [x¡b2]

≡w1(x)M1(x) + w2(x)M2(x); (2.4)

where b16 b2 are the right endpoints of the supports of S1 and S2, respectively, and

wi(x) =
niSi(x)

n1S1(x) + n2S2(x)
I [S2(x)¿ 0]; i = 1; 2:

Note that for each .xed x, M (x) is a convex combination of M1(x) and M2(x). Thus,
M16M2 ⇒M16M6M2. Substituting the empirical estimates in (2.4) using an ob-
vious notation, we estimate M1 and M2 as two separate 1-sample problems as above,
with the restrictions M16 M̂ and M2¿ M̂ as if M̂ is known. These estimators are
given by

M∗
1 (x) = M̂ 1(x) ∧ M̂ (x)

= ŵ1(x)M̂ 1(x) + ŵ2(x)[M̂ 1(x) ∧ M̂ 2(x)]

= M̂ 1(x) − ŵ2(x)[M̂ 1(x) − M̂ 2(x)]I [M̂ 1(x)¿M̂ 2(x)] (2.5)
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and

M∗
2 (x) = M̂ 2(x) ∨ M̂ (x)

= ŵ2(x)M̂ 2(x) + ŵ1(x)[M̂ 1(x) ∨ M̂ 2(x)]

= M̂ 2(x) + ŵ1(x)[M̂ 1(x) − M̂ 2(x)]I [M̂ 1(x)¿M̂ 2(x)]: (2.6)

When the order restriction holds only on [t1; t2), the estimators are exactly as in (2.3)
and the material following, with M̂ replacing M2. Note that when M̂ 1(x)¿M̂ 2(x),
the weights used to average them are proportional to the number of items alive after
time x. The 1-sample estimator in (2.2) can be seen as the limit of (2.5) as n2→∞.
Ebrahimi (1993) mentions the estimator in (2.6), and uses it for the example in his
Figs. 1 and 2. However, for his problem of estimating M2 only, he de.nes a diKer-
ent estimator that minimizes the MSE if certain functionals of the distributions are
known. He uses the asymptotic distributions to compute and then estimate these func-
tionals. It is not clear how large the sample sizes must be before reliable estimates
could be obtained, especially in the right tail where the variance of M̂ i(x) is very
large.

3. Consistency and asymptotic unbiasedness

Let ‖f‖ba denote supa6x6b |f(x)|. Yang (1978) has shown that, under the .rst mo-
ment assumption only,

‖M̂ i −Mi‖b0→0 a:s: for any b¡bi; i = 1; 2:

Now consider the last expression in (2.5) for M∗
1 and let 0¡b¡b1 be arbitrary. If

n1→∞ and n2 is .nite then ‖ŵ2‖b0→0 a:s. If n1; n2→∞, then

|M̂ 1(x) − M̂ 2(x)|→0 a:s: uniformly on {x∈ [0; b]: M1(x) =M2(x)}

and

I [M̂ 1(x)¿M̂ 2(x)]→0 a:s: uniformly on {x∈ [0; b]: M1(x)¡M2(x)}:

Thus ‖M∗
1 −M1‖b0→0 a:s: The strong uniform consistency of M∗

2 can be derived sim-
ilarly.

3.1. Asymptotic unbiasedness

Under the .rst moment assumption only, Yang (1978) has shown that

EM̂ i(x) =Mi(x)P[Si(x)¿ 0]; i = 1; 2:
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This shows that the unrestricted estimators are asymptotically unbiased. For the re-
stricted estimators we need a stronger moment assumption in our proof.

Theorem 3.1. Assume that X and Y have 7nite variances. Then M∗
1 and M∗

2 are
asymptotically unbiased as n1; n2→∞.

Proof. We .rst note that

M̂ 1(x) =
n1

∫∞
x Ŝ1(u) du

n1Ŝ1(x)
I [Ŝ1(x)¿ 0]

=

∑
j(Xj − x)I [Xj ¿x]∑

j I [Xj ¿x]
I

[∑
j

I [Xj ¿x]¿ 0

]

with a similar expression for M̂ 2(x). Using the last expression in (2.5) for M∗
1 (x); its

asymptotic unbiasedness will be proven if we can show that the expected value of

� ≡ ŵ2(x)[M̂ 1(x) − M̂ 2(x)]I [M̂ 1(x)¿M̂ 2(x)]

converges to 0 as n1; n2→∞. Fix x. To simplify the notation we write Li = niŜi(x)
for i = 1; 2. As pointed out by Yang (1978); given L1 = l1; M̂ 1 has the distribution of
the average of l1 i.i.d. random variables; U1; U2; : : : ; Ul1 ; say; with s.f. S1(u)=S1(x) for
u¿ x; EUi =M1(x); and

Var(Ui) = Var[X − x|X ¿x] ≡ �2
1(x):

Similarly; given L2 = l2; M̂ 2 has the distribution of the average of l2 i.i.d. random
variables; V1; V2; : : : ; Vl2 ; say; with s.f. S2(u)=S2(x) for u¿ x; EVi =M2(x); and

Var(Vi) = Var[Y − x|Y ¿x] ≡ �2
2(x):

The expected value of � is given by

E�= E[E[�|L1; L2]]

=
∑
l1

∑
l2

l2I [l1 + l2 ¿ 0]
l1 + l2

E[( SUl1 − SVl2 )I( SUl1 − SVl2 ¿ 0)]

×P[L1 = l1]P[L2 = l2];

where SUl1 and SVl2 denote the averages. Note that

∑
l1

∑
l2

l2I [l1 + l2 ¿ 0]
l1 + l2

P[L1 = l1]P[L2 = l2] = Eŵ2(x):
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Now E[ SUl1− SVl2 ]=M1(x)−M2(x)6 0 and Var[ SUl1− SVl2 ]=�
2
1(x)=l1+�2

2(x)=l2=�l1l2 ; say;
and �l1l2→0 if l1; l2→∞. Let Z = ( SUl1 − SVl2 )=�l1l2 . Then EZ = (M1(x) −M2(x))=�l1l2
and Var Z = 1. Thus

E[( SUl1 − SVl2 )I( SUl1 − SVl2 ¿ 0)] = �l1l2E[ZI(Z ¿ 0)]→0 if l1; l2→∞:

Since
∑

l16m1

∑
l26m2

P[L1 = l1]P[L2 = l2] can be made arbitrarily small for any given
m1 and m2 by choosing n1 and n2 large enough; we see that E�→0 as n1; n2→∞. This
concludes the proof of the theorem.

Remarks. The second moment assumption in the theorem could be relaxed to that of
a moment of order 1 + " by using truncation arguments. We do not know if the .rst
moment assumption is suTcient.

4. Simulations

We have carried out a quite extensive simulation using the following decreasing,
constant, and increasing MRLFs:

Mi(x) = ai(1 − x=bi)I [x6 bi]; bi ¿ai; with Si(x) = (1 − x=bi)bi=ai−1;

which corresponds to the U (0; 1) distribution when ai = 0:5 and bi = 1;

Mi(x) = #i; corresponding to the Exp(#i) distribution; and

Mi(x) = aix + bi; ai; bi ¿ 0; with Si(x) = (ai=bi)(1 + aix=bi)1=ai−1; x¿ 0:

We were particularly interested in comparing the estimated bias and MSE of the various
estimators, especially when M1 =M2. Typically the sample sizes chosen were small to
moderate, but we also chose some very large sample sizes to check on the asymptotic
unbiasedness. Some of these results are presented in Tables 1 and 2.

In Table 2 we consider the exponential distribution only. Two of these simulations
use small, unequal sample sizes and diKerent means. The other simulation uses equal
means but with very large sample sizes.

It is clear that in all cases the restricted estimators have more bias, as is to be
expected, but the MSE is uniformly smaller than the unrestricted empirical. For the
exponential case, the bias is seen to be steadily decreasing with the sample size ac-
cording to Theorem 3.1.

5. Asymptotic distributions and weak convergence

In this section we consider the joint asymptotic distribution of M∗
1 −M1 and M∗

2 −M2

at a point x, and also their weak convergence on [0; b] for b¡b1 ∧ b2 = b1. We also
construct simultaneous con.dence intervals and con.dence bands for M1 and M2 using
the asymptotic distributions.
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Table 1
Comparison of bias (B) and MSE of M̂ 1; M∗

1 ; M̂ 2; and M∗
2 at various q-quantiles

q B(M̂ 1(x)) B(M∗
1 (x))

MSE(M̂1(x))
MSE(M∗

1 (x))
B(M̂ 2(x)) B(M∗

2 (x))
MSE(M̂2(x))
MSE(M∗

2 (x))

M1(x) = M2(x) = 1, n1 = 10; n2 = 10, #iterations = 10; 000
0.1 −0.0056 −0.0990 1.5175 −0.0028 +0:0906 1.1959
0.2 −0.0061 −0.1050 1.5200 −0.0063 +0:0926 1.2013
0.5 −0.0026 −0.1224 1.6261 −0.0120 +0:1073 1.1921
0.8 −0.0067 −0.1486 1.7688 −0.0174 +0:1252 1.1751
0.9 −0.0135 −0.1589 1.7293 −0.0201 +0:1312 1.1701

M1(x) = M2(x) = 1, n1 = 20; n2 = 20, #iterations = 10; 000
0.1 −0.0010 −0.0673 1.4326 −0.0049 +0:0613 1.2583
0.2 −0.0030 −0.0728 1.4502 −0.0058 +0:0638 1.2546
0.5 −0.0040 −0.0862 1.4983 −0.0074 +0:0746 1.2420
0.8 −0.0072 −0.1015 1.5216 −0.0069 +0:0882 1.2233
0.9 −0.0071 −0.1061 1.5255 −0.0078 +0:0927 1.2123

M1(x) = M2(x) = 0:5x + 1, n1 = 10; n2 = 10, #iterations = 10; 000
0.1 −0.0195 −0.1571 1.7857 −0.0152 +0:1224 1.0744
0.2 −0.0245 −0.1766 1.8031 −0.0169 +0:1364 1.0619
0.5 −0.0323 −0.2402 2.0108 −0.0134 +0:1947 1.0362
0.8 −0.0471 −0.3157 2.2385 −0.0402 +0:2370 1.0182
0.9 −0.0616 −0.3469 2.2215 −0.0516 +0:2547 1.0120

M1(x) = M2(x) = 0:5x + 1, n1 = 20; n2 = 20, #iterations = 10; 000
0.1 −0.0151 −0.1185 1.6247 −0.0233 +0:0797 1.1397
0.2 −0.0196 −0.1350 1.6448 −0.0223 +0:0863 1.1339
0.5 −0.0205 −0.1785 1.7388 −0.0367 +0:1200 1.1059
0.8 −0.0210 −0.2303 1.8875 −0.0447 +0:1612 1.0762
0.9 −0.0267 −0.2528 1.9287 −0.0508 +0:1727 1.0717

M1(x) = M2(x) = 1−x
2 , n1 = 10; n2 = 10, #iterations = 10; 000

0.1 −0.0008 −0.0251 1.3199 −0.0003 +0:0239 1.3358
0.2 −0.0014 −0.0244 1.3197 −0.0004 +0:0225 1.3392
0.5 −0.0016 −0.0209 1.3555 −0.0005 +0:0186 1.3645
0.8 −0.0112 −0.0210 1.1825 −0.0101 +0:0091 1.7010
0.9 −0.0179 −0.0208 1.0589 −0.0170 −0.0030 1.5827

M1(x) = M2(x) = 1−x
2 , n1 = 20; n2 = 20, #iterations = 10; 000

0.1 −0.0006 −0.0177 1.3311 +0:0001 +0:0173 1.3313
0.2 −0.0003 −0.0167 1.3388 −0.0005 +0:0160 1.3529
0.5 −0.0004 −0.0136 1.3642 −0.0001 +0:0131 1.3548
0.8 −0.0010 −0.0099 1.3505 −0.0009 +0:0091 1.4810
0.9 −0.0061 −0.0108 1.1646 −0.0059 +0:0044 1.7665

Throughout this section we assume that X and Y have 7nite variances. We also
assume that S1 and S2, and hence M1 and M2 have common discontinuities on the
intersection of their supports. The latter assumption is automatically satis.ed if the
s.f.s are continuous, the appropriate model for life distributions. However, sampling
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Table 2
Comparison of the bias and MSE of M̂ 1; M∗

1 ; M̂ 2; and M∗
2 for the exponential case at various q-quantiles,

)q, of M1,—two with diKerent means and (small) sample sizes, and one with equal means and sample sizes
equal to 5000

q B(M̂ 1(x)) B(M∗
1 (x))

MSE(M̂1(x))
MSE(M∗

1 (x))
B(M̂ 2(x)) B(M∗

2 (x))
MSE(M̂2(x))
MSE(M∗

2 (x))

M1(x) = 1, M2(x) = 1:1, n1 = 7; n2 = 10, #iterations = 10; 000
0.1 −0.0129 −0.1076 1.5706 −0.0046 +0:0608 1.1676
0.2 −0.0162 −0.1175 1.5881 −0.0060 +0:0631 1.1673
0.5 −0.0145 −0.1466 1.7748 −0.0137 +0:0712 1.1666
0.8 −0.0322 −0.1890 1.8578 −0.0166 +0:0849 1.1448
0.9 −0.0422 −0.2080 1.8781 −0.0206 +0:0879 1.1392

M1(x) = 1, M2(x) = 1:1, n1 = 10; n2 = 7, #iterations = 10; 000
0.1 −0.0023 −0.0690 1.3563 +0:0006 +0:0953 1.2540
0.2 −0.0029 −0.0752 1.3883 +0:0001 +0:1016 1.2447
0.5 −0.0010 −0.0922 1.4726 −0.0050 +0:1207 1.2302
0.8 −0.0058 −0.1183 1.5437 −0.0166 +0:1409 1.2251
0.9 −0.0074 −0.1276 1.5668 −0.0257 +0:1449 1.2266

M1(x) = M2(x) = 1, n1 = 5000; n2 = 5000, #iterations = 5000
0.1 −0.0036 −0.0077 1.1285 −0.0034 +0:0007 1.5613
0.2 −0.0050 −0.0094 1.0698 −0.0049 −0.0006 1.6311
0.5 −0.0067 −0.0117 1.0370 −0.0066 −0.0015 1.6543
0.8 −0.0072 −0.0131 1.0515 −0.0071 −0.0013 1.6252
0.9 −0.0065 −0.0127 1.0839 −0.0065 −0.0004 1.6008

Here B(·) = Bias(·).

schemes might render them discrete. The assumption is to assure that the continuous
mapping theorem (Billingsley, 1968) applies to some functions of the MRL processes
de.ned below.

We .rst review the weak convergence of the unrestricted estimators. Let

Zini =
√
ni(M̂ i −Mi) on [0; bi) for i = 1; 2

denote the two independent MRL processes. Yang (1978) showed that Zini , when com-
posed with S−1

i (the left-continuous inverse of Si) converges weakly to a Gaussian
process on [0; d] for any d¡ 1 under the assumption that Si has a density. Hall and
Wellner (1979) pointed out that the density assumption is unnecessary if we consider
the convergence on the domain of Si, and that the convergence on all intervals of the
form [0; b]; b¡bi implies convergence on [0; bi). Thus

Zini
w⇒Zi on [0; bi); (5.1)

where Zi is a mean-zero Gaussian process with

Cov[Zi(x); Zi(y)] =
�2
i (y)
Si(x)

for 06 x6y¡bi: (5.2)
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This weak convergence is in D[0; bi) endowed with the Skorohod topology. By using
stronger, weighted metrics Hall and Wellner (1979) and CsNorgő and Zitikis (1996)
have extended the above results using stronger assumptions on Si. Since the weights
do not apply universally to all s.f.s, we have not considered these generalizations. Our
results for the restricted estimators are based on (5.1) and (5.2). Let

Z∗
ini =

√
ni(M∗

i (x) −Mi(x)); i = 1; 2:

In the proofs below we frequently use the continuous mapping theorem (Billingsley,
1968), which we mention, and Slutsky’s theorem, which we do not mention.

5.1. The 1-sample case

Consider the estimator M∗
1 in (2.2) when M2 is known. By (5.1) and (5.2),

Z∗
1n1

(x) =
√
n1(M∗

1 (x) −M1(x))

=
√
n1(M̂ 1(x) ∧M2(x) −M1(x))

=
√
n1[M̂ 1(x) −M1(x)] ∧√

n1[M2(x) −M1(x)]

d→ Z∗
1 (x); (5.3)

where Z∗
1 (x) d=Z1(x), if M1(x)¡M2(x), and Z∗

1 (x) d= [Z1(x)] ∧ 0, with a point mass of
1
2 at 0, if M1(x) =M2(x).

For the weak convergence of M∗
1 we have the following theorem.

Theorem 5.1. Let b¡b1 be 7xed. Consider the estimator M∗
1 in (2.2) when M2 is

known.
(i) If M1 ¡M2 on [0; b], then

Z∗
1n1

w⇒Z1 on [0; b]: (5.4)

(ii) If M1(x0) =M2(x0) for some x0 ∈ (0; b) and M1 ¡M2 on (x0; s0]; s0 ¡b; or on
[s0; x0); s0 ¿ 0, then Z∗

1n1
does not converge weakly.

(iii) If M1 =M2 on [0; b], then

Z∗
1n1

w⇒Z1 ∧ 0 on [0; b]: (5.5)

Proof. (i) Since
√
n1(M2 − M1)→∞ uniformly on [0; b] by our assumption; the re-

sult follows from the third expression on the r.h.s. of (5.3) for Z∗
1n1
; (5.1); and the

continuous mapping theorem.
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(ii) This proof is similar to that of Rojo (1995, Theorem 2.1). We assume that
M1 ¡M2 on (x0; s0]; s0 ¡b; the proof of the other case is similar. We .rst note that
under our assumptions,

M∗
1 (x0) −M1(x0) = [M̂ 1(x0) −M1(x0)] ∧ 0 from (5:3):

Now, for any x0 ¡t6 s0 and ,¿ 0, we have
(1) M̂ 1(t)¡M2(t) eventually w.p.1, and
(2) on this event, M∗

1 (t) = M̂ 1(t). Thus,

lim
n1→∞P{|Z∗

1n1
(t) − Z∗

1n1
(x0)|¿ ,}

= lim
n1→∞P{√n1|[M̂ 1(t) −M1(t)] − [M̂ 1(x0) −M1(x0)] ∧ 0|¿ ,}

¿ lim
n1→∞P{√n1[M̂ 1(t) −M1(t)] − [M̂ 1(x0) −M1(x0)] ∧ 0¿ ,}

¿ lim
n1→∞P{

√
n1[M̂ 1(t) −M1(t)]¿ ,} = 1 − -(,

√
S1(t)=�1(t))

from (5.1), where - is the standard normal c.d.f. This can be easily shown to violate
the necessary tightness condition for weak convergence in Theorem 15.2 in Billingsley
(1968).

(iii) When M1 =M2 on [0; b], we have Z∗
1n1

=
√
n1[(M̂ 1 −M1)∧ 0] on [0; b], and the

result follows from (5.1) and the continuous mapping theorem.

5.2. The 2-sample case

First we consider the asymptotic distribution of the vector (Z∗
1n1

(x); Z∗
2n2

(x))′ for a
.xed 0¡x¡b1 ∧ b2 = b1 with M∗

1 and M∗
2 as de.ned in (2.5) and (2.6), noting that

(Z1n1 (x); Z2n2 (x))
′ d→ (Z1(x); Z2(x))′ with independent components. We write

Z∗
1n1

(x) =
√
n1(M∗

1 (x) −M1(x))

=
√
n1{ŵ1(x)(M̂ 1(x) −M1(x)) + ŵ2(x)[(M̂ 1(x) −M1(x))

∧ [(M̂ 2(x) −M2(x)) + (M2(x) −M1(x))]]}

= Z1n1 (x) + ŵ2(x)[0 ∧ (
√
n1=n2 Z2n2 (x) − Z1n1 (x)

+
√
n1(M2(x) −M1(x))] (5.6)
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and

Z∗
2n2

(x) =
√
n2(M∗

2 (x) −M2(x))

=
√
n2{ŵ2(x)(M̂ 2(x) −M2(x)) + ŵ1(x)[(M̂ 2(x) −M2(x))

∨ [(M̂ 1(x) −M1(x)) − (M2(x) −M1(x))]]}

= Z2n2 (x) + ŵ1(x)[0 ∨ (
√
n2=n1 Z1n1 (x) − Z2n2 (x)

−√
n2(M2(x) −M1(x))]; )]: (5.7)

If n1→∞ and n2 ¡∞, then ŵ1(x)→1 and
√
n1ŵ2(x)→0 a:s., Z∗

1n1
(x) d→Z1(x); and

Z∗
2n2

(x) has no limiting distribution. The same is true if the subscripts 1 and 2 are
switched.

If n1→∞; n2→∞; and n2=n1→0, then ŵ1(x)→1 and
√
n1ŵ2(x)→0 a:s. Again

Z∗
1n1

(x) d→Z1(x). Now
√
n2(M̂ 1(x) − M1(x))

p→ 0 and
√
n2(M2(x) − M1(x)) = 0 or

converges to ∞ depending on whether M2(x) is equal to or more than M1(x). Thus

Z∗
2n2

(x) d→
{
Z2(x); if M1(x)¡M2(x);

Z2(x) ∨ 0; if M1(x) =M2(x)

and Z∗
1n1

(x) and Z∗
2n2

(x) are asymptotically independent. Similarly it can be seen that,

when n1→∞; n2→∞; and n2=n1→∞, Z∗
2n2

d→Z2(x) and

Z∗
1n1

(x) d→
{
Z1(x); if M1(x)¡M2(x);

Z1(x) ∧ 0; if M1(x) =M2(x)

and the two are asymptotically independent.
If n1→∞; n2→∞; and n2=n1→. with 0¡.¡∞, then ŵ1(x)→w1(.; x) and ŵ2(x)→

w2(.; x) a:s:, where

w1(.; x) =
S1(x)

S1(x) + .S2(x)
and w2(.; x) =

.S2(x)
S1(x) + .S2(x)

: (5.8)

Since (Z1n1 (x); Z2n2 (x))
′ d→ (Z1(x); Z2(x))′ and {wi(x)} converge to constants a.s., by the

continuous mapping theorem we have

(Z∗
1n1

(x); Z∗
2n2

(x))′ d→ (W1(x); W2(x))′

with the limiting distributions given as follows. If M1(x)¡M2(x), then (W1(x);

W2(x))′ d= (Z1(x); Z2(x))′ with independent components. If M1(x) = M2(x), then the
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marginal distributions of (W1(x); W2(x))′ are given by

W1(x) d=w1(.; x)Z1(x) + w2(.; x)[Z1(x) ∧ (Z2(x)=
√
.)]

= Z1(x) + w2(.; x)[0 ∧ (Z2(x)=
√
.− Z1(x))]

and

W2(x) d=w2(.; x)Z2(x) + w1(.; x)[Z2(x) ∨ (
√
.Z1(x))]

= Z2(x) + w1(.; x)[0 ∨ (
√
.Z1(x) − Z2(x))]:

Since {Zi(x)} are independent mean-zero normals with variances {�2
i (x)=Si(x)}, it is

easy to compute the means of {Wi(x)}. These are given by

E[W1(x)] = −w2(.; x)√
20

√
�2

1(x)
S1(x)

+
�2

2(x)
.S2(x)

and

E[W2(x)] =
w1(.; x)√

20

√
.�2

1(x)
S1(x)

+
�2

2(x)
S2(x)

:

The covariances do not have closed form expressions, but they can be computed in
a straightforward manner numerically. For example, writing 12

i for the variance of

Zi(x), so that (Z1(x); Z2(x))′ d= (11U; 12V )′, where U and V are i.i.d. standard normals,
E[Z1(x)(0 ∨ (

√
.Z1(x) − Z2(x)))] may be written as

.12
1

∫ ∫
u(u− (12=11

√
.)v) I(u¿ (12=11

√
.)v)3(u)3(v) du dv;

where 3 is the density of the standard normal. It may be noted that in the limit as
.→0 or ∞, (W1(x); W2(x))′ has the same distributions as derived above.

We now consider the weak convergence of the bivariate process (Z∗
1n1
; Z∗

2n2
)′, as

given by (5.6) and (5.7), on [0; b] × [0; b], with b¡b1.

Theorem 5.2. Assume that n1→∞; n2→∞; and n2=n1→. with 0¡.¡∞.
(i) If M1 ¡M2 on [0; b], then

(Z∗
1n1
; Z∗

2n2
)′ w⇒ (Z1; Z2)′ with independent components on [0; b] × [0; b]:

(ii) If M1(x0) =M2(x0) for some x0 ∈ (0; b) and M1 ¡M2 on (x0; s0]; s0 ¡b; or on
[s0; x0); s0 ¿ 0, then (Z∗

1n1
; Z∗

2n2
)′ does not converge weakly.
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(iii) If M1 =M2 on [0; b], then

(Z∗
1n1
; Z∗

2n2
)′ w⇒ (W1; W2)′ on [0; b] × [0; b]; where

W1
d=

1
1 + .

Z1 +
.

1 + .
[Z1 ∧ (Z2=

√
.)] and

W2
d=

.
1 + .

Z2 +
1

1 + .
[Z2 ∨ (

√
.Z1]:

Proof. We .rst note that; since Ŝ1 and Ŝ2 are strongly uniformly convergent; the
bivariate weight process

(ŵ1(·); ŵ2(·))′→(w1(.; ·)w2(.; ·))′ a:s:; uniformly on [0; b] × [0; b]:

(i) Since Z1n1 and Z2n2 are independent, (5.1) implies that

(Z1n1 ; Z2n2 )
′ w⇒ (Z1; Z2)′ on [0; b] × [0; b]; (5.9)

where the convergence is in D[0; b]×D[0; b] in the product Skorohod topology. Using
this and the fact that

√
ni[M2 −M1]→∞, uniformly on [0; b], the conclusion follows

from the de.nitions in (5.6) and (5.7) and the continuous mapping theorem.
(ii) We assume that M1 ¡M2 on (x0; s0]; s0 ¡b; the proof of the other case is

similar. Note that

Z∗
1n1

(x0) = Z1n1 (x0) + ŵ2(x0)[0 ∧ (
√
n1=n2 Z2n2 (x0) − Z1n1 (x0))]

≡ Z1n1 (x0) + U (x0);

where U (x0) has the limiting distribution of

0 ∧ w2(.; x0)[Z2(x0)=
√
.− Z1(x0)] d= 0 ∧ V;

where V ∼ N (0; 12) with 12 =w2
2(.; x0)[�2

2(x0)=.S2(x0) +�2
1(x0)=S1(x0)]. Also, note that

for any x0 ¡t6 s0, and 7¿ 0,

P[Z∗
1n1

(t) �=Z1n1 (t)]6 7 for all suTciently large n1 and n2: (5.10)

Suppose that {Z∗
1n1

} is tight. Then, for each ,¿ 0 and 7¿ 0, there exists x0 ¡t16 s0
such that

P
[

sup
x06x6t1

|Z∗
1n1

(x) − Z∗
1n1

(x0)|¿ ,
]
6 7 for all suTciently large n1 and n2

(5.11)

and, since {Z1n1} is tight, there exists x0 ¡t26 s0 such that

P
[

sup
x06x6t2

|Z1n1 (x) − Z1n1 (x0)|¿ ,
]
6 7 for all suTciently large n1 and n2:

(5.12)
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Let t0 = t1 ∧ t2 and assume that the sample sizes are large enough that (5.10)–(5.12)
hold. Then, using |a− b|¡, ⇒ |a|¿ , or |b|¡ 2,,

P[|Z∗
1n1

(t0) − Z∗
1n1

(x0)|¡,]6 P[|Z1n1 (t0) − Z∗
1n1

(x0)|¡,] + 7

= P[|Z1n1 (t0) − Z1n1 (x0) − U (x0)|¡,] + 7

6 P[|Z1n1 (t0) − Z1n1 (x0)|¿ ,] + P[|U (x0)|¡ 2,] + 7

6 P[|U (x0)|¡ 2,] + 27:

Now P[|U (x0)|¡ 2,] = P[|0 ∧ V |¡ 2,] = P[0 ∨ (−V )¡ 2,]→-(2,=1). Thus (5.11)
cannot hold for 7 suTciently small, and {Z∗

1n1
} cannot be tight.

(iii) If M1 =M2 on [0; b], then S1 = S2 on [0; b]. Thus

(ŵ1(·); ŵ2(·))′→(1=(1 + .); .=(1 + .)′ a:s:; uniformly on [0; b] × [0; b]:

The conclusion now follows from (5.6), (5.7), and (5.9) with an application of the
continuous mapping theorem.

Remark. Following the same arguments it may be seen that; if M16M2 on [t1; t2]
only; then Theorems 5.1 and 5.2 hold on [a; b] with a¿ t1 and b¡ t2 for the estimators
described in Section 2.

5.3. Asymptotic con7dence intervals and con7dence bands

In this section we consider construction of (1−8)-coeTcient (asymptotic) con.dence
intervals for M1(x) and M2(x) and (1−8)-coeTcient (asymptotic) con.dence bands for
M1 and M2 over intervals. Let XM and YM denote the largest order statistics from the
respective samples, and let 12

i (x) = �2
i (x)=Si(x) denote the variance of M̂ i(x); i = 1; 2.

Denote the sample estimates by 1̂2
i (x)=�̂2

i (x)=Ŝi(x), where �̂2
i (x) is the sample variance

(we recommend using (niŜi(x)−1) as the denominator) of the remaining niŜi(x) sample
after time x. Let Li(·) and Ui(·); i=1; 2; denote the lower and upper con.dence intervals
(bands), respectively. For con.dence intervals at a point, although we use the quantiles
of the standard normal distribution in the formulas based on asymptotic distributions,
a more conservative approach, recommended by Berger et al. (1988) for their testing
problem, will be to use the same quantiles of a t-distribution with the degrees of
freedom chosen by Welch’s approximation for unequal variances, if the remaining
sample size is small. For con.dence bands over intervals we use Corollary 3 of Hall
and Wellner (1979) which we state below as a theorem. Let B be a standard Brownian
motion, let �̂i(0) denote the sample standard deviation of the entire sample, i=1; 2; and
for any 9∈ (0; 1) let a=a(9) be such that P(‖B‖1

0)6 a)=9. Let di(·)= �̂i(0)=
√
niŜi(·)

for i = 1; 2.
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Theorem 5.3 (Hall and Wellner, 1979). If the sampling variables have moments of
the order of r for some r ¿ 2; then

lim
ni→∞P[|M̂ i(x) −Mi(x)|6 adi(x) ∀x¿ 0]¿ 9 (5.13)

with equality for continuous s.f.s.

The probability P(a) ≡ P(‖B‖1
0)6 a) has an in.nite series expansion in the standard

normal c.d.f. (Billingsley, 1968). Hall and Wellner (1979) show that for a¿ 1:4, the
approximation P(a) = 4-(a) − 3 gives a 3-place accuracy. They also provide a short
table of values that we reproduce below.

For the con.dence bands below we assume that the moment conditions of Theorem
5.3 hold for X and Y .

Let 12
i (x) = �2

i (x)=Si(x), and let 1̂2
i (x) denote its sample estimate for i = 1; 2. In the

1-sample case, for x¡XM and the restriction M1(x)6M2(x), using (5.3) we de.ne

L1(x) = 0 ∨ [M̂ 1(x) − z8=21̂1(x)=
√
n1] ∧M2(x);

U1(x) = [M̂ 1(x) + z8=21̂1(x)=
√
n1] ∧M2(x):

Note that there is a positive probability of getting the degenerate interval {M2(x)}.
Using (5.4) and (5.13) we de.ne the upper and lower bounds of a (1 − 8)-coeTcient
con.dence band for M1 over an interval [0; b] for a b¡XM by

LHW
1 (·) = 0 ∨ [M̂ 1(·) − ad1(·)] ∧M2(·) and

UHW
1 (·) = [M̂ 1(·) + ad1(·)] ∧M2(·);

where a is found from Table 3 using P(a) = 1− 8 (the superscript stands for Hall and
Wellner). A similar interval or band could be de.ned for the reverse ordering.

In the 2-sample case our interest is in constructing (1 − 8)-coeTcient simultaneous
con.dence intervals and bands for M1 and M2. Since there are only two of these,
we use the Bonferroni procedure. We note that a simultaneous con.dence region of
the form [L1; U1] × [L2; U2] could be possibly reduced by intersecting it with the set
A= {(x1; x2)∈R2: x16 x2}. For rectangular con.dence regions we could use

[L1; U1 ∧ U2] × [L1 ∨ L2; U2]; (5.14)

which is what we employ. Of course we need to be careful that we do not de.ne
empty intervals.

We note that M∗
2 is positive on [0; XM ∨YM ), while M∗

1 is positive on [0; XM ). For an
x¡XM , if M̂ 1(x)¡M̂ 2(x), we de.ne the simultaneous con.dence intervals for M1(x)
and M2(x) by (5.14) with

Li = M̂ i(x) − z8=41̂i(x)=
√
ni and Ui = M̂ i(x) + z8=41̂i(x)=

√
ni; i = 1; 2: (5.15)

If M̂ 1(x)¿ M̂ 2(x), we have M∗
1 (x) = M∗

2 (x) = M̂ (x) = ŵ1(x)M̂ 1(x) + ŵ2(x)M̂ 2(x). In
this case we propose the following con.dence procedure. Since our point estimates
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Table 3
Approximate values of P(a) for some values of a

a 2.807 2.241 1.960 1.534 1.149 0.871
P(a) 0.99 0.95 0.90 0.75 0.50 0.25

coincide, we use the distribution of the pooled estimator M̂ (x) to construct a common
con.dence interval. It is clear that, when M1(x) =M2(x) =M (x), say,

√
n1[M̂ (x) −M (x)] d→w1(.; x)Z1(x) + w2(.; x)Z2(x)=

√
.

∼ N (0; w2
1(.; x)12

1(x) + w2
2(.; x)12

2(x)=.)

≡ N (0; <2(x)): (5.16)

We then use the common con.dence interval by

Li = 0 ∨ [M̂ (x) − z8=4<̂(x)=
√
ni] and Ui = M̂ (x) + z8=4<̂(x)=

√
ni;

i = 1; 2; (5.17)

where <̂(x) is the sample estimate of <(x), using ŵi(x) to estimate ŵi(.; x). For a
(1−8)-coeTcient simultaneous con.dence band on [0; b] for a b¡XM , we .rst compute
a∗ de.ned by the a that corresponds to P(a) = 1 − 8=2 in Table 3. If M̂ 1 ¡M̂ 2 on
[0; b], then we use (5.14) (extended to functions on [0; b]) to de.ne the con.dence
bands with

LHW
i (·) = 0 ∨ [M̂ i(·) − a∗di(·)] and UHW

i (·) = M̂ i(·) + a∗di(·);

i = 1; 2: (5.18)

If M̂ 1¿ M̂ 2 over some regions, we would have liked to have de.ned our con.dence
bands as in (5.18) on {M̂ 1 ¡M̂ 2} and some generalization of (5.16) on {M̂ 1¿ M̂ 2}.
Theorem 5.3, which is applicable for a single M̂ i, is based on the distribution of
the random variable ‖B‖1

0 which is well known. For a comparable result involving
M̂ we need to know the distribution of the sup of the sum of two independent and
(diKerently) scaled Brownian motions, and we have not been able to derive that result.
Lacking this distribution theory, we de.ne the con.dence bands by (5.18) and (5.14)
on {M̂ 1 ¡M̂ 2} and a common con.dence band, [L(·); U (·)], by

L(·) = LHW
1 (·) ∨ LHW

2 (·) and U (·) = UHW
1 (·) ∧ UHW

2 (·) on {M̂ 1¿ M̂ 2};
(5.19)

which is based on the heuristic that both con.dence bands are simultaneously valid for
a common MRLF, which is the way we make our point estimation. However, our point
estimate, M̂ , may not be in the band always. If M̂ 1¿ M̂ 2 on all of [0; b], we could
provide a common con.dence band, essentially with the assumption that M1 =M2, and
using M̂ as the estimator of a single sample problem. However, it will probably be
wiser to revise our opinion about the order restriction.
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We end this section by verifying the asymptotic coverage probabilities. This is ob-
vious for the 1-sample case from (5.1) for the con.dence interval, and (5.13) for the
con.dence band. For the simultaneous con.dence intervals for M1 and M2, we note
that (5.15) provides the correct (conservative) asymptotic coverage probability always,
since each individual does with con.dence coeTcient 1 − 8=2 (the possible shorten-
ing of the intervals using (5.14) comes free of charge under the order restriction).
Note that, if M1(x)¡M2(x), then eventually this is the only formula that will apply
wp1. If M1(x)=M2(x), then (5.17) also provides the correct asymptotic coverage from
(5.16), thus providing a shorter con.dence interval in case of violation of the ordering.
Similarly, the con.dence bands given by (5.18) and (5.14) always provide the correct
(conservative) asymptotic coverage probability by Theorem 5.3, again noting that this
is the only formula that will eventually apply wp1 if M1 ¡M2 on [0; b] from the strong
uniform consistency. On the set M1 = M2 (5.19) also provides the correct asymptotic
coverage since both individual con.dence bands given by the (5.13) in Theorem 2.3
provide a coverage probability ¿ 1 − 8=2 for the same MRLF.

5.4. An example

Bjerkedal (1960, p. 140) reports on two studies of survival time (in days) of guinea
pigs infected with diKerent dosages of tubercle bacilli. We compare the MRLFs for
Regimens 4.3 (M2) and 5.5 (M1), assuming that the higher dosage corresponds to a
smaller MRL. The data is complete, i.e., there was no censoring, with n1 = n2 = 72.
Fig. 2 presents a graph of M̂ 1; M̂ 2; M∗

1 ; and a 90% con.dence band for M1 alone on

Fig. 2. Restricted and unrestricted estimators of MRLF of M1 (regimen 5.5) and M2 (regimen 4.3) and 90%
con.dence band for M1. M1hat = M̂ 1, M2hat = M̂ 2, M1∗ = M∗

1 , M2∗ = M∗
2 , U1 = UHW

1 and L1 = LHW1 .
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[0; 200] only since the lower bound of the con.dence band becomes 0 at approximately
160 days.

6. Concluding remarks

In this paper we have provided estimators for two MRLFs, M1 and M2, under the
order restriction that M16 (¿)M2, on their entire ranges or on a closed interval, when
M2 is known or unknown. Ebrahimi (1993) initiated this study, and has provided an
excellent example (his Figs. 1 and 2) using a 2-sample problem with real data. We
have shown that they are strongly uniformly consistent and asymptotically unbiased.
We have also derived their (joint) asymptotic distributions, both at a point, and their
(joint) weak convergence on an interval. We have provided formulas for con.dence
intervals and con.dence bands in the 1-sample case and for simultaneous con.dence
intervals and bands for the 2-sample case. The con.dence intervals or bands are always
of the same lengths or shorter than those in the unrestricted case (using the Bonferroni
procedure in the 2-sample case). However, these con.dence procedures do not employ
the distribution theory developed under order restriction; these are useful in testing
for and against the order restrictions, a problem we propose to pursue in the future.
We have also carried out an extensive simulation, and have presented some of the
results. A surprising outcome of these simulations is that the restricted estimators appear
to be superior to the unrestricted empirical ones in terms of MSE, uniformly at all
quantiles of the distributions we have investigated. We do not completely understand
this phenomenon, and it is worth further studies.
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