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Abstract

Let a(i) and b(i) be the ith smallest components of a = (a1; : : : ; an) and b = (b1; : : : ; bn) re-

spectively, where a; b ∈ R+n. The vector a is said to be p-larger than b (denoted by a
p
¡b) if∏k

i=1 a(i) 6
∏k

i=1 b(i), for k = 1; : : : ; n. Let U1; : : : ; Un be independent U (0; 1) random variables.

It is shown that if �, �∗ belonging to R+n are such that �
p
¡�∗, then

∑n
i=1 Ui=
i is greater than∑n

i=1 Ui=
∗i according to dispersive as well as hazard rate orderings. These results give simple
bounds on various quantities of interest associated with these statistics. c© 2002 Elsevier Science
B.V. All rights reserved.
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1. Introduction

Stochastic models are usually su:ciently complex in various <elds of statistics.
Obtaining bounds and approximations for some of their characteristics of interest is
of practical importance. That is, the approximation of a stochastic model either by
a simpler model or by a model with simple constituent components might lead to
convenient bounds and approximations for some particular and desired characteristics
of the model. Lot of work has been done in the literature on this problem.
Statistics which are linear combinations of random variables, arise frequently in

statistics and their distribution theory can be quite complicated in many cases. From
time to time attempts have been made in the literature to obtain bounds and approxi-
mations for their distributions. Some relevant references are Proschan (1965), Bock
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et al. (1987), Tong (1988), Boland et al. (1994), Kochar and Ma (1999) and Ma
(2000) among others.
In this paper, we will concentrate only on linear combinations of independent and

identically distributed uniform random variables with positive coe:cients (or equiv-
alently convolutions of independent uniform random variables diHering in their scale
parameters) and obtain new dispersive ordering results for them when the vectors of
their coe:cients satisfy certain order restrictions. These results lead to simple bounds
on various quantities of interest associated with these statistics. Throughout this pa-
per, ‘increasing’ means nondecreasing and ‘decreasing’ means nonincreasing. First we
review the necessary de<nitions and concepts.
Let X and Y be two random variables with distribution functions F and G, respec-

tively. Let F−1 and G−1 be their right continuous inverses. X is said to be more
dispersed than Y (denoted by X ¿disp Y ) if

F−1(v)− F−1(u)¿ G−1(v)− G−1(u) for 06 u6 v6 1: (1.1)

This means that the diHerence between any two quantiles of F is at least as much as
the diHerence between the corresponding quantiles of G. From this one can easily see
that

X ¿disp Y ⇔ F−1(x)− G−1(x) is increasing in x ∈ (0; 1): (1.2)

A consequence of X ¿disp Y is that |X1 − X2|¿st |Y1 − Y2| and which in turn implies
var(X )¿ var(Y ) as well as E[|X1−X2|]¿ E[|Y1−Y2|], where X1; X2 (Y1; Y2) are two
independent copies of X (Y ), and ‘st’ represents the usual stochastic order.
By taking u= 0 in (1:1), it follows that for nonnegative random variables, X ¿disp

Y ⇒ X ¿st Y . Recall that a random variable X with survival function MF is said to
be larger than another random variable Y with survival function MG in hazard rate
ordering (denoted by X ¿hr Y ) if MF(x)= MG(x) is increasing in x. It is easy to see that
for nonnegative random variables, X ¿hr Y ⇒ X ¿st Y . Bagai and Kochar (1986)
noted the following connection between hazard rate ordering and dispersive ordering.

Lemma 1.1. Let X and Y be two nonnegative random variables. If X ¿disp Y and X
or Y is IFR; then X ¿hr Y .

For details, see Chapters 1 and 2 of Shaked and Shanthikumar (1994).
One of the tools which is useful for deriving inequalities in statistics and probability

is the notion of majorization. Let {x(1) 6 x(2) 6 · · · 6 x(n)} denote the increasing
arrangements of the components of the vector x= (x1; x2; : : : ; xn). The vector x is said

to majorize the vector y (written x
m
¡y) if

∑j
i=1 x(i) 6

∑j
i=1 y(i) for j = 1; : : : ; n − 1

and
∑n

i=1 x(i) =
∑n

i=1 y(i). Functions that preserve the majorization ordering are called
Schur-convex functions. The vector x is said to majorize the vector y weakly (written
if

∑j
i=1 x(i) 6

∑j
i=1 y(i) for j = 1; : : : ; n. See Marshall and Olkin (1979, Chapter 3)

for properties and more details on these partial orderings. Recently Bon and Paltanea
(1999) have considered a pre-order on R+n, which they call as a p-larger order. A
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vector x in R+n is said to be p-larger than another vector y also in R+n (written

x
p
¡y) if

∏j
i=1 x(i) 6

∏j
i=1 y(i); j = 1; : : : ; n. Let log(x) denote the vector of the loga-

rithms of the coordinates of x. It is easy to verify that

x
p
¡y ⇔ log(x)

w
¡ log(y): (1.3)

It is known that x
m
¡y⇒ (g(x1); : : : ; g(xn))

w
¡(g(y1); : : : ; g(yn)) for all concave functions

g (cf. Marshall and Olkin, 1979, p. 115). From this and (1.3), it follows that for x; y ∈
R+n

x
m
¡y ⇒ x

p
¡y:

The converse is, however, not true. For example, the vectors (0:2; 1; 5)
p
¡(1; 2; 3) but

majorization does not hold between these two vectors. Obviously, for any vector � ∈
R+n, (
1; : : : ; 
n)

p
¡(
̃; : : : ; 
̃), where 
̃ denotes the geometric mean of the components

of the vector �.
Let U1; : : : ; Un be independent U (0; 1) random variables and let S(
1; : : : ; 
n) =∑n
i=1 Ui=
i, where 
i ¿ 0 for i = 1; : : : ; n. Note that S(
1; : : : ; 
n) ≡dist

∑n
i=1 X
i , where

X
i ; : : : ; X
n are independent random variables such that for i=1; : : : ; n, X
i=distU (0; 1=
i).
In Section 2, we prove that

�
p
¡�∗ ⇒ S(
1; : : : ; 
n)¿disp S(
∗1 ; : : : ; 


∗
n): (1.4)

We also show that

�
p
¡�∗ ⇒ S(
1; : : : ; 
n)¿hr S(
∗1 ; : : : ; 


∗
n);

where ¿hr denotes hazard rate ordering.

2. Main results

To prove the desired results we need the following theorems.

Theorem 2.1 (Lewis and Thompson, 1981). Let Z be a random variable independent
of random variables X and Y . If X ¿disp Y and Z has a log-concave density; then

X + Z ¿disp Y + Z:

Theorem 2.2 (Lewis and Thompson, 1981). Let for n¿ 1; Xn; Yn; X and Y be ran-
dom variables such that Xn → X and Yn → Y; weakly. Then Xn ¿disp Yn; n ¿ 1
implies X ¿disp Y .

Theorem 2.3 (Marshall and Olkin, 1979, p. 59). A real valued function � on the set
A ⊂ Rn satis:es

x
w
¡y on A ⇒ �(x)¿ �(y);

if and only if; � is decreasing and Schur-convex on A.
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Lemma 2.1. The function  :R+n → R satis:es

x
p
¡y⇒  (x)¿  (y) (2.1)

if and only if;

(i)  (ea1 ; : : : ; ean) is Schur-convex in (a1; : : : ; an)
(ii)  (ea1 ; : : : ; ean) is decreasing in ai; for i = 1; : : : ; n;

where ai = log xi, for i = 1; : : : ; n.

Proof. Using relation (1.3), we see that (2.1) is equivalent to

a
w
¡b⇒  (ea1 ; : : : ; ean)¿  (eb1 ; : : : ; ebn); (2.2)

where ai = log xi and bi = log yi, for i = 1; : : : ; n. Taking �(a1; : : : ; an) =  (ea1 ; : : : ; ean)
in Theorem 2.3, we get the required result.

Let X
1 and X
2 be independent U (0; 1=
1) and U (0; 1=
2) random variables, respec-
tively. Without loss of generality assume that 
1 ¿ 
2. The density function and the
distribution function of S(
1; 
2) = X
1 + X
2 are, respectively,

g(
1; 
2; x) =





1
2x; 06 x¡ 1=
1;


2; 1=
1 6 x 6 1=
2;


1 + 
2 − 
1
2x; 1=
2 6 x 6 1=
1 + 1=
2;

0; otherwise
(2.3)

and

G(
1; 
2; x) =




0; x 6 0;


1
2x2=2; 06 x 6 1=
1;


2x − 
2=2
1; 1=
1 6 x 6 1=
2;

1− (
1 + 
2 − 
1
2x)2=2
1
2; 1=
2 6 x 6 1=
1 + 1=
2;

1; otherwise:
(2.4)

The right inverse function of G is

G−1(
1; 
2; x) =




(2x=
1
2)1=2; 06 x 6 
2=2
1;

(x + 
2=2
1)=
2; 
2=2
16x61− 
2=2
1;

1=
1 + 1=
2 − (2(1− x)=
1
2)1=2; 1− 
2=2
1 6 x¡ 1:
(2.5)

Now we prove the main result of this section.
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Theorem 2.4. Let X
1 ; : : : ; X
n be independent random variables such that X
i has

U (0; 1=
i) distribution; for i = 1; : : : ; n. Then, �
p
¡�∗ implies S(
1; : : : ; 
n) ¿disp

S(
∗1 ; : : : ; 

∗
n):

Proof. We <rst prove the result for n=2 and then extend it to arbitrary positive integer
n¿ 2. Without loss of generality, let us assume that 
1 ¿ 
2 and 
∗1 ¿ 
∗2 .

Case (a): 
1 ¿
2 and 
∗1 ¿
∗2 .
We <rst consider the case when 
1 �= 
∗1 and 
2 �= 
∗2 and shall discuss the other

possibilities later. It follows from Lemma 2.1 that it is su:cient to show that

(i) the function

G−1(ea1 ; ea2 ; �)− G−1(ea1 ; ea2 ;  ) (2.6)

is Schur-convex in (a1; a1) for all 0¡ 6 �¡ 1, where ai = log 
i; i = 1; 2,

(ii) the function de<ned in (2.6) is decreasing in ai; i = 1; 2.

Without loss of generality, assume that a1 + a2 = c. From the assumptions we have
a1 ¿ a2 and a∗1 ¿ a∗2 and a1 �= a2 and a∗1 �= a∗2 . Using relation (1.2), it is easy to see
that (i) is equivalent to saying that the function

h(x) = G−1(ea1 ; ea2 ; x)− G−1(ea
∗
1 ; ea

∗
2 ; x) is increasing in x ∈ (0; 1): (2.7)

The function h in (2.7) can be written as

h(x) =




0; 06 x 6 ea2−a1

2 ;

e−a2 (x + ea2−a1

2 )− (2xe−c)1=2; ea2−a1

2 ¡x 6 ea
∗
2 −a∗1
2 ;

e−a2 (x + ea2−a1

2 )− e−a∗2 (x + ea
∗
2 −a∗1
2 ); ea

∗
2 −a∗1
2 6 x 6 1− ea

∗
2 −a∗1
2 ;

e−a2 (x + ea2−a1

2 )− e−c(ea
∗
1 + ea

∗
2 )

+(2(1− x)e−c)1=2; 1− ea
∗
2 −a∗1
2 ¡x 6 1− ea2−a1

2 ;

e−c(ea1 + ea2 )− (2(1− x)e−c)1=2;

−e−c(ea
∗
1 + ea

∗
2 ) + (2(1− x)e−c)1=2; 1− ea2−a1

2 ¡x¡ 1:
(2.8)

Under the constraints of majorization between (a1; a2) and (a∗1 ; a
∗
2), it is easy to see

that the function h is increasing in x. This proves (i). It is worth noting that (ii) is
equivalent to saying that S(ea1 ; ea2 ) is decreasing in a1 and a2 according to dispersive
ordering. Now let a1 ¿a′1. It is easy to see that X

ea
′
1
¿disp Xea1 . The random variables

X ’s are independent and Xea2 has a log-concave density. Combining these facts, it
follows from Theorem 2.1 that S(ea

′
1 ; ea2 ) ¿disp S(ea1 ; ea2 ). Similarly one can prove

that S(ea1 ; ea2 ) is decreasing in a2. The required result follows from these. Now if


1 = 
∗1 , then (
1; 
2)
p
¡(
∗1 ; 


∗
2 ) implies that 
2 ¡
∗2 and which in turn implies that
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X
2 ¿disp X
∗2 . The required result in this case follows from Theorem 2.1, since the
random variables X ’s have log-concave densities and they are independent. The last
possibility is 
1 = 
∗2 . In this case 
2 ¡
1 = 
∗2 ¡
∗1 . Again the required result follows
from Theorem 2.1. This completes the proof of case (a).
Case (b): 
1 = 
2 and 
∗1 ¿
∗2 .
Noting that 
1 = 
∗2 ¡
∗1 or 
1 ¡
∗2 ¡
∗1 , the result follows from Theorem 2.1.
Case (c): 
1 ¿
2 and 
∗1 = 
∗2 .
Again the required result for the case when 
1 = 
∗1 immediately follows from The-

orem 2.1. Now let 
1 �= 
∗1 . In this case (
1; 
2)
p
¡(
∗1 ; 


∗
2 ) implies that 
∗1 ¿ 
̃, where


̃=(
1
1)1=2, the geometric mean of 
1; 
2. First we prove the result for the case when


∗1 = 
̃. It is easy to see that, for n¿ 1, (
1; 
2)
p
¡(
̃; 
̃+ 1=n). Using this observation,

it follows from case (a) that, for n¿ 1,

X
1 + X
2 ¿disp X
̃ + X
̃+1=n:

Using the fact that X
̃+1=n → X
̃ , weakly, it follows that X
̃+X
̃+1=n → S(
̃; 
̃) weakly.
Combining these observations, the required result in this case follows from Theorem
2.2. The result for the case when 
∗1 ¿
̃ follows from the above case, the fact that
X
̃ ¿disp X
∗1 and again using Theorem 2.1. This completes the proof of this case.
Case (d): 
1 = 
2 and 
∗1 = 
∗2 .
Using (2.5) in this case, it is easy to see that (1.2) holds.
This completes the proof for n= 2.
Now we prove the result for n¿ 2. As in the proof for n= 2, we show that

(i)

a
m
¡a∗ ⇒ S(ea1 ; : : : ; ean)¿disp S(ea

∗
1 ; : : : ; ea

∗
n ):

where ai = log 
i and a∗i = log 
∗i , i = 1; ; : : : ; n,
(ii) S(ea1 ; : : : ; ean) is decreasing in ai, for i= 1; : : : ; n according to dispersive ordering.

To prove (i), it is su:cient to consider the case when (a1; a2)
m
¡(a∗1 ; a

∗
2), and ai=a∗i ,

i = 3; : : : ; n. Then it follows from the case n= 2 that S(ea1 ; ea2 ) ¿disp S(ea
∗
1 ; ea

∗
2 ). The

random variable S(ea3 ; : : : ; ean) has a log-concave density, since the class of distribu-
tions with log-concave densities is closed under convolutions (cf. Dharmadhikari and
Joag-dev, 1988, p. 17). Adding S(ea3 ; : : : ; ean) to both sides of the above inequality,
we <nd that the required result follows from Theorem 2.1. The proof of (ii) here is
similar to that of (ii) in case n = 2. Using (i) and (ii), again the main result follows
from Theorem 2.3.

The following result immediately follows from the above results.

Corollary 2.1. Let X
1 ; : : : ; X
n be independent random variables such that X
i =dist

U (0; 1=
i) for i = 1; : : : ; n. Then; �
p
¡�∗ implies S(
1; : : : ; 
n)¿hr S(
∗1 ; : : : ; 


∗
n):
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Fig. 1. Graphs of survival functions of S(
1; 
2).

Fig. 2. Graphs of survival functions of S(
1; 
2).

Proof. Since S(
1; : : : ; 
n) has a log-concave density, it is IFR (cf. Barlow and Proschan,
1981). From Theorem 2.4, S(
1; : : : ; 
n) ¿disp S(
∗1 ; : : : ; 


∗
n): The required result then

follows from Lemma 1.1.

Let 
̃ denote the geometric mean of 
1; : : : ; 
n. Then since (
1; : : : ; 
n)
p
¡(
̃; : : : ; 
̃),

we get the following lower bounds on various quanties of interest associated with
convolutions of uniform random variables.

Corollary 2.2. Let X
1 ; : : : ; X
n be independent random variables such that X
i =dist

U (0; 1=
i) for i = 1; : : : ; n. Then;

(a) S(
1; : : : ; 
n)¿disp S(
̃; : : : ; 
̃),
(b) S(
1; : : : ; 
n)¿hr S(
̃; : : : ; 
̃),
(c) S(
1; : : : ; 
n)¿st S(
̃; : : : ; 
̃).

In Figs. 1 and 2, we plot the survival functions (denoted by MG(
1; 
2; x)) of con-
volutions of two independent uniform random variables along with the bounds given
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Fig. 3. Graphs of hazard rate functions of S(
1; 
2).

Fig. 4. Graphs of hazard rate functions of S(
1; 
2).

by Corollary 2.2(c). In Figs. 3 and 4, we plot the hazard rate functions (denoted by
r(
1; 
2; x)) of convolutions of two independent uniform random variables along with
the bounds given by Corollary 2.2(b).
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