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Abstract

Let X, ..., X, be independent exponential random variables with X; having hazard rate «;,
i=1,....nLetd={(4, ..., 4,). Let Yy, ..., Y, be a random sample of size n from an exponen-
tial distribution with common hazard rate 4 = 3"_, /;/n. The purpose of this paper is to study
stochastic comparisons between the largest order statistics X,., and Y,., from these two
samples. It i1s proved that the hazard rate of X,., is smaller than that of Y, . This gives
a convenient upper bound on the hazard rate of X,,.,, in terms of that of Y,.,,. Tt is also proved
that Y., is smaller than X,., according to dispersive ordering. While it is known that the
survival function of X,., is Schur convex in i, Boland, Ei-Neweihi and Proschan [J. Appl.
Prohab. 31 (1994) 180-192] have shown that for n > 2, the hazard rate of X, is not Schur
concave. It is shown here that, however, the reversed hazard rate of X,,., is Schur convex in 4.
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1. Introduction

Order statistics play an important role in reliability theory in particular and in
statistics in general. A k-out-of-n system of n components functions if and only if at
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least k of the components function. The time to failure of a k-out-of-n system of
n components with lifetimes Xy, ..., X, corresponds to the (n — k + 1)th order statis-
tic, X,,_x +1.5- Thus the study of the lifetimes of k-out-of-n systems is equivalent to the
study of the probability distributions of order statistics. A series system is an n-out-of-
n system and a parallel system is a 1-out-of-n system. Thus the time to failure of
a series system corresponds to the first order statistic while that of a parallel system
corresponds to the largest order statistic. Series and parallel systems are the simplest
examples of coherent systems and they have been extensively studied in the literature.
Much is known about their stochastic properties when the components are indepen-
dent and identically distributed. But it is not uncommon to encounter systems with
components having nonidentical lifetimes. Some general results on order statistics
and spacings from nonidentical distributions have been obtained by Pledger and
Proschan (1971), Proschan and Sethuraman (1976), Bapat and Kochar (1994), Boland
et al. (1994), Kochar and Kirmani (1995), Boland et al. (1996), Kochar and Korwar
(1996) and Kochar and Rojo (1996), among others.

The exponential distribution plays a very important role in statistics. Because of its
non-aging property, it has many nice properties and it often gives very convenient
bounds on survival probabilities and other characteristics of interest for systems with
non-exponential components. Pledger and Proschan (1971) considered the problem of
stochastically comparing the order statistics and the spacings of nonidentical indepen-
dent exponential random variables with those corresponding to independent and
identically distributed exponential random variables. This topic is pursued further in
this paper which concentrates on stochastic comparisons of the largest order statistics
from heterogenous and homogeneous exponential distributions.

There are many ways in which a random variable X can be said to be smaller than
another random variable Y. In the usual stochastic ordering case, a random variable
X with distribution function F is stochastically smaller than a random variable Y with
distribution function G (and written as X% Y)if F(t) = G(¢) for all ¢t. In some cases,
a pair of distributions may satisfy a stronger condition called likelihood ratio ordering.
If distributions F and G possess densities (or probability mass functions) f and ¢,
respectively, and f(x)/g(x) 1s nonincreasing in x, then we say that X is smaller than
Y accordmg to likelihood ratio ordering. This is denoted by X < Y. It is known that
X< Y implies that F(x)/G(x) is nonincreasing in x, where F=1 —FandG=1—-G
denote the survival functions of X and Y, respectively. This latter condition defines
hazard rate ordering. In the case of absolutely continuous distributions, this is
equivalent to the hazard rate of F, rp(x) = f(x)/F(x), being everywhere as large as
r¢(x) = g(x)/G(x), the hazard rate of G. If this happens, X is sa1d to be smaller than
Y according to hazard rate ordering and this is denoted by X < Y. Note that hazard
rate ordering implies stochastic ordering. The reversed hazard rate of a life distribution
F is defined as Fp(x) = f(x)/F(x). Let F(x) denote the reversed hazard rate of G Then
X is said to be smaller than Y in the reversed hazard rate order (and written as X < Y)if
Fr(x) < Fg(x), for all x, or equivalently, if F(x)/G(x) is nonincreasing in x. The reversed
hazard rate ordering also implies stochastic ordering, but in general, there are no
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1mpllcat10ns between hazard rate and reversed hazard rate orderings. It is known
that X < Y also implies X< Y. Lehmann and Rojo (1992) provide simple character-
izations of these orderings.

The above notions of stochastic dominance among univariate random variables
can be extended to the multivariate case. A random vector X = (X, .... X, ) s smaller
than another random vector Y = (Y, ..., Y,) in the multivariate stochastic order (and
written as X%Y) if E[¢(X)] < E[¢(Y)] for all increasing functions ¢ whenever the
expectations exist. Karlin and Rinott (1980) introduced and studied the concept of
multivariate likelihood ratio ordering. Let f and ¢ denote the density functions of
Xand Y. respectlvely Then X is smaller than ¥ in the multivariate likelihood ratio order
(written as X< Y)if

JXg) < flx Ay)gx Vy) forevery x and y in R", (1.1

where x A y = (min(xy, yq), ..., min(x,. ¥,)), x V y = (max{xy, y{) ... ,max(x,. v,

Itis known that multivariate likelihood ratio ordering implies multivariate stochas-
tic ordering, but the converse is not true. Also if two random vectors are ordered
according to multivariate likelihood ratio ordering, then their corresponding subsets
of components are also ordered accordingly. See Chapters 1 and 4 of Shaked and
Shanthikumar (1994) for more details on various kinds of stochastic orders. their
inter-relationships and their properties.

We shall also be comparing the various statistics according to the criteria of
dispersiveness. Let X and Y be two random variables with distribution functions
F and G, respectively. Let F~' and G~' be their right continuous mverscs The
distribution of the random variable X is less dispersed than that of Y (X < Y)if

F'o)—F'wm<G Hoy)— G ), for0<u<e <t (1.2)
This means that the difference between any two quantiles of F is smaller than the

difference between the correspondmg quantiles of G. When X and Y have densities
fand ¢, respectively, then X < Y if and only if,

X) <f(F 'G(x)) for all xe(0. x). (1.3)
One of the consequences of Xd%p Y is that var(X) < var(Y). For other properties of
dispersive ordering, see Chapter 2 of Shaked and Shanthikumar (1994).

The concepts of majorization of vectors and Schur convexity of functions will be
needed throughout this work. Let {x, < x5 < - < .\‘(n)} denote the increasing

arrangement of the components of thc vectorx =(xy, X5 ... X,). The vector y is said
to majorize the vector x (written as r<y iy v < \_,,:1 Xgnj=1.....n-—1and
Siove =Y, X A real-valued function ¢ defined on a set </ < R" is said to be

Schur convex (Schur concave) on ./ ifx%y =px) < (= )p(p).
Pledger and Proschan (1971) proved the following result on order statistics from
exponential distributions.

Theorem 1.1. Let X, .... X, be independent exponential random variables with X
having hazard rate 7 i=1,....n Let Y ....Y, be another set of independent



206 R. Dykstra et al. | Journal of Statistical Planning and Inference 65 (1997) 203211

exponential random variables with AF as the hazard rate of Y;, 1,...,n. Let
A=(A1, -, in) and A% = (A, ..., A¥). Then A>=Ai* implies

X = Y,, and Xk:,,ng;,,, fork=2 ...,n

Proschan and Sethuraman (1976) strengthened this result from componentwise
stochastic ordering to multivariate stochastic ordering. They proved that under the
conditions of the above theorem (X, ., ... ,Xn:,,)SZt(le,,, ces Yon)

The purpose of the present investigation is to see to what extent these results can be
strengthened. This paper focuses on the probabilistic behavior of the largest order
statistic. For the special case n =2 and k =2, Boland et al. (1994) partially
strengthened the above result from stochastic ordering to hazard rate ordering. They
proved that the hazard rate of a parallel system of two independent exponential
components is Schur-concave in (4;, 4,), the component hazard rates. They also
concluded that the above result cannot be generalized for arbitrary n. Then the next
natural problem is to compare the hazard rate of X,., with that of Y,.,, where
Y., .... Y, is a random sample of size n from an expoilrential distribution with hazard
rate . =Y 7_, A/n. We prove in Section 2 that Y, ,<X,,. This gives a convenient
upper bound on the hazard rate of X,,., in terms of that of Y,.,. We also prove that
Yn:,,d%pX,,:,,. In the last section it is shown that the reversed hazard rate of X,,., is
Schur-convex in 4.

2. Comparisons with i.i.d. exponentials

Let X, ...,X, be independent exponential random variables with X;
having hazard rate 4;,,i=1, ... ,n Let A = (4, ..., 4,). Let Yy, ..., Y, be a random
sample of size n from an exponential distribution with common hazard rate
Z=Y"_,J/n In this section we shall stochastically compare X,., with Y,.,. It is
proved that Y,., is less dispersed and has greater hazard rate than X, .. The proof of
these results hinges on the following technical lemma from p. 73 of Mitrinovic, Pecaric

and Fink (1993).

Lemma 2.1. Let h be a nondecreasing function such that h(0) > 0, and let a; > 0,
i=1,..,n Then

2 Yi=1dih(a;)

a; < == . 2.1
il=—[1 Yi=1hla)

Now we prove the main result of this section.
Theorem 2.1. Let Xy, ..., X, be independent exponential random variables with X,

having hazard rate /;,i =1, ... ,n. Let Yy, ..., Y, be a random sample of size n from an



R. Dvkstra et al. [ Journal of Statistical Planning and Inference 63 (1997) 203 - 211 207

exponential distribution with common hazard rate 7. =Y. 4;/n. Then

disp
('cl) Yn n 5 Xn ne (22)
(b) }n n<Xn n- (21)

Proof. (a) Let F and G denote the distribution functions of Y,., and X, , with
corresponding densities fand g, respectively.
It is easy to verify that for x > 0,

H

1 .
F 'G(x)= Tln[l — [T —=emmmtm.
/

i=1

and

n n—1
fIF 1G] = n/—l[l -1l ——e"‘“')l"”] ﬂ 1"} . (2.4)

i=1

disp
To prove that Y,., < X,,.,.. it follows from the relation (1.3) that it 1s sufficient to show that

g(x) <f[F 'G(x)], forx>0.

That is, for x > 0,

n / /«'ie—/l,x n o _
S e
- " . n—1)n
”/ |:1 - n(l —e_’l,vx)lmj”:l'l(l AC""‘)} '

i=1 i

This is equivalent to,

H 1 n H 1
2 )‘"{ﬁ_ 1} <[Z] /}[ltﬁ" 1} (2.3)

e, if for x >0,

i /1. n n l Lin
— < 1' T I o . 2
izl f—e tx ™ [i—z1/l][ilj1 (- f’A'x):| =0

Multiplying both sides by x (> 0), we see that to prove the desired result. it is suflicient
to prove the following inequality for y > 0,

n n 1'n
Vi
S L — — | . (2.7)
=y —exp(—y) [Z :||:1—[1 —expl — }’i):|

In Lemma 2.1, let a;=(1 —e ™)' h(t)= —In(l — ")/i" so that hiu) =
yi/(1 —exp(— y;)). Itis easy to verify that h is nondecreasing and lim, ., h{t) = 1. Thus
all the conditions of Lemma 2.1 are satisfied. Applying the inequality (2.1) yields the
required result (2.7).

(b) Bagai an Kochar (1986 (also see Theorem 2.B.13 of Shaked and Shanthikumar.
1994) proved that 1f X < Y and either X or Y has IFR (increasing failure rate)
distribution, then X< Y. It follows from Theorem 5.8 of Barlow and Proschan (1981)
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that Y,., has IFR dlstrlbutlon Using this and part (a) of this theorem we get the
required result that Y,. ,,<X,, - O

This theorem gives a simple upper bound on the hazard rate of a parallel system of
heterogencous exponential components in terms of that of a parallel system of
identically distributed exponential random variables. It also gives a lower bound on
the variance of X,., in terms of that of Y,.,. These results are summarized in the
following corollary.

Corollary 2.1. Under the conditions of Theorem 2.1,
(a) the hazard rate ry . of X,., satisfies

ni[l — exp(—Ax)]"~ 'exp(— 4x)
1 —[1—exp(—ix)]" ’

T, () <

(b)
>

var 2

(2.9)

HM:

=
/

3. Some Schur type results

In this section some new Schur type results for the hazard rate and the reversed
hazard rate of the maximum of independent exponential random variables are
obtained. The next theorem strengthens Theorem 2.1 of Boland et al. (1994) from
hazard rate ordering to likelihood ratio ordering.

Theorem 3.1. Let X, and X, be two independent exponential random variables with
hazard rates A, and /.,, respectively. Let Yy and Y, be another set of independent
exponential random variables with respective hazard rates .5 and i%. Then

- m \ Ir
(A1s ).Z)E(AT, /“§)3X2:22Y2:2- (3.1

Proof. Kochar and Rojo (1996) have proved that (i, 1,) >(i¥, %) implies
Ir
—Xi2z2Ys5— Y10 (3.2)

It follows from Theorem 2.1 of Kochar and Korwar (1996) that under the conditions
of the theorem, X,., is independent of X, , — X;.,, Y,., is independent of
Y, Y., and Xy, det Y, ., has log-concave density.
Using Lemma 14.B.9 of Shaked and Shanthikumar (1994), it follows from (3.2) that
X0 =(X5., — Xy, 2)+X12 (Yzz Vio)+ Yi.=Y,,.
That is,

Ir
Xy22Y;5,. [l
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In the light of the counter-example of Boland et al. (1994) as discussed in the first
section, the result of Theorem 3.1 on the life of a parallel system of two components,
cannot be extended beyond the case n =

Since under the assumptions of Theorem 31, X, 2>Y7 soand X, = Y, .. one
might wonder whether the vector (X.,, X,.,) is greater than the vector (Y, .,, Y,.5) in
the multivanate likelihood ratio ordering sense. The answer 1s in the negative even in
the case when the Y’s are identically distributed as shown by the next counter example.

Example 3.1. Let 2, =3, 4, = 5, AT = /¥ = 4. The joint density of (X, 5. X, ,) is
f(xy.x5) = 15[e " (Gx#35) 4 o= Gxi#S] for x; < x,.
and that of (Y,.,.Y,.5) is
g(yy.va) = 16(2Ne #¥) for 1‘1 < ys.
In order to prove that (X;.;, X, 2) (Yl 5, Y5.5), we have to show that
Fx1. x2)g (v, va) < f(x V oy xa Vva)gxg A vy, xs Ays) (3.3)
holds.
Now for x; < x, and y; < y3,
S0 xa)g (v pa) = 15X 162 155130780 | oo 13% s Sxa e8], (3.4)
and
S0V yn xa Vyaglxy Ay xa Ays)
= 15x16(2!) [e—[S(x1 Vo) 3(x; V oy +8(X A v 4o B v 3G vyt 8(7«'&)1]_
(3.5}

At x; =4, x, = 46, y; = 41, v, = 43, we find that the value of (3.4) is 240(2!) [¢ *%*
+ ¢~ °7%] and that of (3.5) is 240(2!) [e 33! + e **!] showing thereby that (3.3) docs
not hold in this case.

A natural question to ask is whether for n > 2, (4, ..., 4,) = = ~(2F, ... .7F) implies
X, ,,> Y, .,? The next example shows that for n = 3, even hazard rate ordering docs
not hold between X,., and Y,.,, proving thereby that for arbitrary n, Theorem 1.1
cannot be strengthened from stochastic ordering to hazard rate ordering.

Example 3.2. The survival function of X,.; is
Fy.3(x) = Fi(X)Fa(x) F3(x) + FU(x) Fa(x)F3(x) + F2(x) F(x) F3(x)
+ Fy(x)Fy(x)F,(x)
= F5(x)F5(x) + F5(x)Fy (x) F3(x) + F3(x)F{(x)F(x)
= e F[eh™ + et 4 efv - 2], (3.6)

in the case of exponential random variables. Here s = /| + 4, + /3.



210 R. Dykstra et al. [ Journal of Statistical Planning and Inference 65 (1997) 203-211
Let 4 = (40, 10, 1) and A* = (40, 5.5, 5.5). Then obviously, A>A* But the ratio of
the survival functions of X,.5 to that of Y,.5

e40.\' + ele +e* — 2
e4-Ox + eS.Sx + eS.Sx -2

is not monotone in x. This can be seen by verifying that the values of this ratio at 0.01,
0.07 and 0.25 are 1.0013, 1.0084 and 1.00025, respectively. ThlS ratio should have been
increasing in x in order for the hazard rate ordering, X,.; > = Y,.; to hold.

As discussed earlier and as pointed out by Boland et al. (1994), the hazard rate of
X,.., the lifetime of a parallel system of n components is not Schur concave in 4 for
n > 2, However, we prove in the next theorem that the reversed hazard rate of X,,., is
Schur convex in 4 for any n > 1.

Theorem 3.2. Let X,, ..., X, be independent exponential random variables with X
having hazard rate /; fori =1, ... ,n. Then the reversed hazard of X,,., is Schur convex
in A. That is, if Yy, ..., Y, is another set of independent exponential random variables
with parameters (AF, ..., AF), then

AZr=X,, 27,

Proof. For x > 0, the distribution function of X,., is

n

Fn:n(x) = n [1 - e*l,-x]

i=1

with the reversed hazard rate

N d 1 & (Ahx)e 4~
rn:n(ls X) d_ ln Fn n ; Z 1 _ e ]-.x (37)
Since for x > 0, the ith term in the summation (3.7) i1s convex in 2;x, i =1, ... ,n, It

follows that 7,.,(4, x) 1s Schur convex in (44, ..., 4,) for each x (cf. Marshall and Olkin,
1979, p. 64). O

The above result partially strengthens Theorem 2.1 of Pledger and Proschan (1971)
from stochastic ordering to reversed hazard rate ordering for the largest order
statistics.
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