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Abstract 

Let X~ . . . . .  X,, be i n d e p e n d e n t  exponen t i a l  r a n d o m  var iables  wi th  X, hav ing  haza rd  ra te / . f ,  
i = 1 . . . . .  n. Let J. = (21, ... ,2,) .  Let Y1 . . . .  , Y, be a r a n d o m  sample  of  size n f rom an e x p o n e n -  
tial d i s t r ibu t ion  wi th  c o m m o n  haza rd  rate 2 = ~ ' =  1 ).~/'n. The  p u r p o s e  of  this pape r  is to stud~ 
s tochas t i c  c o m p a r i s o n s  be tween  the  largest  o rde r  stat ist ics X .... and  Y ..... f rom these two 
samples .  It is p roved  tha t  the haza rd  rate of  X .... is smal ler  t han  tha t  of  Y,,:,,. This  gix.es 
a conven i en t  uppe r  b o u n d  on  the haza rd  rate of  X, : ,  in t e rms  of  tha t  of  Y,,:,,. It is also p roved  
that  Y ..... is smal ler  t han  X,,:, a cco rd ing  to d ispers ive  order ing .  Whi le  it is k n o w n  that  the 
survival  func t ion  of  3;-,:, is Schur  convex  in ~,, Boland ,  EI-Neweihi  and  P r o s c h a n  [J.  Appl. 

Prohah.  31 (1994) 180 192] have s h o w n  that  for n > 2. the  haza rd  rate of  X ..... is not  Schur  
concave .  It is s h o w n  here  that ,  however ,  the reversed haza rd  rate of  X,,:,, is Schur  convex  in 2. 
c 1997 Elsevier Science B.V. 
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1. Introduction 

Order statistics play an important role in reliability theory in particular and in 
statistics in general. A k-out-of-n system of n components functions if and only if at 
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least k of the components  function. The time to failure of a k-out-of-n system of 
n components  with lifetimes X1 . . . .  , X,  corresponds to the (n - k + 1)th order statis- 
tic, X,  k + 1 ~,. Thus the study of the lifetimes of k-out-of-n systems is equivalent to the 
study of the probability distributions of order statistics. A series system is an n-out-of- 
n system and a parallel system is a 1-out-of-n system. Thus the time to failure of 

a series system corresponds to the first order statistic while that of a parallel system 
corresponds to the largest order statistic. Series and parallel systems are the simplest 
examples of coherent systems and they have been extensively studied in the literature. 
Much is known about  their stochastic properties when the components  are indepen- 
dent and identically distributed. But it is not uncommon to encounter systems with 
components  having nonidentical lifetimes. Some general results on order statistics 

and spacings from nonidentical distributions have been obtained by Pledger and 
Proschan (1971), Proschan and Sethuraman (1976), Bapat and Kochar  (1994), Boland 
et al. (1994), Kochar  and Kirmani (1995), Boland et al. (1996), Kochar  and Korwar  
(1996) and Kochar  and Rojo (1996), among others. 

The exponential distribution plays a very important  role in statistics. Because of its 
non-aging property, it has many nice properties and it often gives very convenient 
bounds on survival probabilities and other characteristics of interest for systems with 
non-exponential components.  Pledger and Proschan (1971) considered the problem of 
stochastically comparing the order statistics and the spacings of nonidentical indepen- 
dent exponential random variables with those corresponding to independent and 
identically distributed exponential random variables. This topic is pursued further in 
this paper which concentrates on stochastic comparisons of the largest order statistics 
from heterogenous and homogeneous exponential distributions. 

There are many ways in which a random variable X can be said to be smaller than 
another random variable Y. In the usual stochastic ordering case, a random variable 
X with distribution function F is stochastically smaller than a random variable Y with 
distribution function G (and written as _ Y) if F(t) >> G(t) for all t. In some cases, 
a pair of distributions may satisfy a stronger condition called likelihood ratio ordering. 
If distributions F and G possess densities (or probability mass funct ions) f  and g, 
respectively, and f (x) /9(x)  is nonincreasing in x, then we say that X is smaller than 

lr 
Y according to likelihood ratio ordering. This is denoted by X ~ Y. It is known that 

lr 
X ~ Y implies that F(x)/G(x) is nonincreasing in x, where F = 1 - F and (7 = 1 - G 
denote the survival functions of X and Y, respectively. This latter condition defines 
hazard rate ordering. In the case of absolutely continuous distributions, this is 
equivalent to the hazard rate of F, rv(X ) =f(x) /F(x) ,  being everywhere as large as 
rG(x) = g(x)/G(x), the hazard rate of G. If this happens, X is said to be smaller than 

hr 
Y according to hazard rate orderin9 and this is denoted by X ~ Y. Note that hazard 
rate ordering implies stochastic ordering. The re~,ersed hazard rate of a life distribution 
F is defined as ~F(X) =f(x) /F(x) .  Let ~ (x )  denote the reversed hazard rate of G. Then 

rh 
X is said to be smaller than Y in the reversed hazard rate order (and written as X ~ Y) if 
?v(x) <<. ~(x) ,  for all x, or equivalently, ifF(x)/G(x) is nonincreasing in x. The reversed 
hazard rate ordering also implies stochastic ordering, but in general, there are no 
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implicat ions between hazard  rate and reversed hazard  rate orderings. It is known 
lr rh 

that  X < Y also implies X < Y. Lehmann  and Rojo (1992) provide simple character-  
izations of these orderings. 

The  above  not ions  of stochastic dominance  a m o n g  univariate  r andom variables 
can be extended to the mul t ivar ia te  case. A r a n d o m  vector  X = (X1 . . . . .  X,,) is smaller 

than another random vector Y = (Y~, . . . ,  Y,,) in the multivariate stochastic order (and 
writ ten as X ~ Y )  if E[q~(X)] ~ E[qS(Y)] for all increasing functions q5 whenever the 
expectat ions exist. Karl in  and Rinott  (1980) in t roduced and studied the concept  of 
mul t ivar ia te  l ikelihood ratio ordering, get  f and ,q denote  the density functions of 
X and IV, respectively. Then X is smaller than Y in the multicariate likelihood ratio order 

(written as X <  Y) if 

.f(x)~.l(y) <~ f ( x  A y),q(x V y) for every x and y in ~", (1.1) 

where x A y = (min(x~, Yl) . . . . .  rain(x,,, y,)), x V y = (max(xt ,  y~) . . . .  max(x,,, y,, )) 
It is known that  mul t ivar ia te  l ikelihood ratio ordering implies mul t ivar ia te  stochas- 

tic ordering, but  the converse is not true. Also if two r a n d o m  vectors are ordered 
according to mul t ivar ia te  l ikelihood ratio ordering, then their cor responding  subsets 
of componen t s  are also ordered accordingly.  See Chapters  1 and 4 of Shakcd and 
Shan th ikumar  (1994) for more  details on various kinds of stochastic orders, their 
inter-relat ionships and their properties.  

We shall also be compar ing  the various statistics according to the criteria of 
dispersiveness. Let X and Y be two r andom variables with distr ibution functions 
F and G, respectively. Let F 1 and G ~ be their right cont inuous  inverses. The 

disp 
distr ibution of the r a n d o m  variable X is less dispersed than that  of Y (X < Y ) if 

F I ( c ) - F  l ( u ) ~ < G - l ( v ) - G  l(u), f o r 0 ~ < u ~ < c ~  1. (1.2) 

This means  that  the difference between any two quantiles of F is smaller than the 

difference between the cor responding  quantiles of G. When X and Y have densities 
disp 

l a n d  ,q, respectively, then X -< Y if and only if, 

g(x) <~,[(F-IG(x)) for all x~(0,  :)c). (1.3t 
d . ~ p y  

One of the consequences of X _ is that  var (X ) ~ var(Y).  For  other  propert ies  of 
dispersive ordering, see Chap te r  2 of Shaked and Shan th ikumar  (1994). 

The concepts  of major iza t ion  of vectors and Schur convexity of functions will be 
needed th roughou t  this work. Let ~-'((l)t. ~ x(2) ~ . , .  ~ X(n) I .  ~ denote  the increasing 
a r rangement  of the componen t s  of the vector  x (x ~, xe . . . . . .  v,,). The vector  y is said 

if Yiil~<Z~=:txii),.l= 1, , n -  1 and to majorize the vector  x (written as x _ y )  5~/= t ... 

Vn~i= I YIil ~'i'--- ~ x(i). A real-valued function ~/) defined on a set .~ ' / c  JR" is said to be 
[i1 

Schur concex (Schur concave) on , ,~/ ifx<_y ~ (h(x) <~ ( >~ )4)(Y). 

Pledger and Proschan (1971) proved the following result on order  statistics from 
exponent ia l  distributions.  

1heo rem 1.1. Let  X~, ... ,X,, be independent exponential random variables with Xf 

having hazard rate )oi; i 1 . . . . .  n. Let Y1 . . . . .  Y,, he another .set o f  independent 
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exponent ia l  random variables with 2* as the hazard rate o f  Yi, 

2 = (21, ... ,2,)  and 2* = (2~', ... ,2*). Then  2 ~ 2 "  implies 

St St 
XI:,  --- Yl:. and Xk:n ~ Yk:n, f o r  k = 2, ... ,n. 

1, . . . , n .  Le t  

Proschan and Sethuraman (1976) strengthened this result from componentwise 
stochastic ordering to multivariate stochastic ordering. They proved that under the 

st 
conditions of the above theorem ( X  1 . . . . . . .  X n : n ) ~ ' ( Y 1  :n, . . . ,  y,:n). 

The purpose of the present investigation is to see to what extent these results can be 
strengthened. This paper focuses on the probabilistic behavior of the largest order 

statistic. For the special case n = 2 and k = 2, Boland et al. (1994) partially 
strengthened the above result from stochastic ordering to hazard rate ordering. They 
proved that the hazard rate of a parallel system of two independent exponential 

components is Schur-concave in (21,)°2), the component  hazard rates. They also 
concluded that the above result cannot be generalized for arbitrary n. Then the next 
natural problem is to compare the hazard rate of X,:,  with that of Y,:,, where 
Y1 . . . . .  1I, is a random sample of size n from an exponential distribution with hazard 

hr 
rate 2 = Z~'= 1 2i/n" We prove in Section 2 that Y,:, < X , : , .  This gives a convenient 
upper bound on the hazard rate of X,:,  in terms of that of Y,:,. We also prove that 

disp 
Y,:, < X,:,. In the last section it is shown that the reversed hazard rate of X,:, is 

Schur-convex in 2. 

2. Comparisons with i.i.d, exponentials 

Let X1, . . . , X ,  be independent exponential random variables with Xi 
having hazard rate 2i, i = 1 . . . . .  n. Let 2 = (21, ... ,2,). Let Y1, . . . ,  II, be a random 
sample of size n from an exponential distribution with common hazard rate 

= }~=~21/n. In this section we shall stochastically compare X,:, with II,:,. It is 
proved that 11,:, is less dispersed and has greater hazard rate than X,:,. The proof of 
these results hinges on the following technical lemma from p. 73 of Mitrinovic, Pecaric 
and Fink (1993). 

Lemma 2.1. Le t  h be a nondecreasin9 func t ion  such that h(0)>  0, and let a i ~ O, 

i = 1 . . . . .  n. Then  

l ai <~ (2.1) Z7=1 a'~h(ai) 

i= 1 ~n=l h(ai) " 

Now we prove the main result of this section. 

Theorem 2.1. Le t  X1, ... , X ,  be independent exponent ial  random variables with Xi 

havin9 hazard rate 2i, i = 1, ... , n. Le t  Y1 . . . . .  Y ,  be a random sample o f  size n f r o m  an 
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exponential distribution with common hazard rate 7. = V" 2i/n. Then /--.i = 1 
d i s p  

!a) Y ..... < X,,:,,; 
hr  

(b) Y,,:,, ~ X,,:,,. 

12.2) 

(2.3) 

Proof. (a) Let F and G denote the distribution functions of Y,,:,, and X ..... with 
corresponding densities f and g, respectively. 

It is easy to verify that for x > 0, 

I ] 1 e ~ . ,x ) l , .  F IG(x)= 7~ln 1 [ I ( 1  - 
i = 1  

and 

. f [ F  1G(x)] = n;~ 1 - (1 -- e ~,~)1.., (1 e ;.,_,-)1.,, (2.4) 
i = 1  J L  i = l  

d isp  

To prove that Y,,:,, < X,:,, it follows from the relation (1.3) that it is sufficient to show thttt 

g(x) <~.f[F ~G(x)], for x > 0. 

Thal is. for x > 0, 

I ~ , ( 1 / i e  e ~uv)lrii~l(1 e ~-,-,)] 

~<nT. 1 -  (1 - e-'~'x) 1'' ( 1 - e  ..... ) 
i =  1 A L l  = 1 

This is equivalent to, 

f { ' l _ e  ~., x } [ ~ ] I  " e ~'') ' ' ' ' l  ] 
i = 1  i = 1  j L i =  1 (1  - -  

i . e . ,  if for x > 0, 

. ( 2 . 6 )  
i = l  i i 

Multiplying both sides by x ( > 0), we see that to prove the desired result, it is sufficient 
to prove the following inequality for y > O, 

' ' ,  ' ]1, 
~" 1 - exp(-- Yi) <~ Yi (2.7) i=1 Li=I ,. 1 --exp( yil 

In Lemma 2.1, let a i = ( 1 - - e  Y')~"", h ( t ) = - l n ( 1 - t " ) / t "  so that h(a,) 
y~/(l - exp( Yi)). It is easy to verify that h is nondecreasing and lim,~0 h(t) - 1. Thus 
all the conditions of Lemma 2.1 are satisfied. Applying the inequality (2.1) yields the 
required result (2.7). 

(b) Bagai an Kochar  (1986) (also see Theorem 2.B.13 of Shaked and Shanthikumar.  

1994) proved that  if xa~PY and either X or Y has IFR (increasing failure ratel 
hr  

distribution, then X < Y. It follows from Theorem 5.8 of Barlow and Proschan ( 1981 ) 
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that Y,:, has IFR distribution. Using this and part (a) of this theorem we get the 
hr 

required result that Y,: ,<X, : , .  [] 

This theorem gives a simple upper bound on the hazard rate of a parallel system of 
heterogeneous exponential components in terms of that of a parallel system of 
identically distributed exponential random variables. It also gives a lower bound on 
the variance of X,:, in terms of that of Y,:,. These results are summarized in the 
following corollary. 

Corollary 2.1. Under the conditions of Theorem 2.1, 

(a) the hazard rate rx,,:,, of X,:n satisfies 

n7~ [1 - e x p ( -  7~x)]"- l e x p ( -  2x) 
rxo:°(x) <~ 

1 - [1 - exp(-7,x)]" ' 

(b) 

(2.8) 

1 " 1 (2.9) 
var(X,:,) ~> ~2 i~1( n _ i + 1) 2. 

3. S o m e  Sehur type results 

In this section some new Schur type results for the hazard rate and the reversed 
hazard rate of the maximum of independent exponential random variables are 
obtained. The next theorem strengthens Theorem 2.1 of Boland et al. (1994) from 
hazard rate ordering to likelihood ratio ordering. 

Theorem 3.1. Let X 1 and X2 be two independent exponential random variables with 
hazard rates 21 and )~2, respectively. Let Ya and Y2 be another set of independent 
exponential random variables with respective hazard rates 2~ and )t~. Then 

m 4,  lr 
( , i~,) .2)_>(, t l ,  ~* /~2) :::> X z : 2  ~ Y2:2.  (3.1) 

na 
Proof. Kochar and Rojo (1996) have proved that (21, A.2)~'(/~l, 23) implies 

lr 
X 2 : 2  - -  X I :  2 ~ Y2:2 - -  YI :  2. (3.2) 

It follows from Theorem 2.1 of Kochar and Korwar (1996) that under the conditions 
of the theorem, X1:2 is independent of X2 :2 -X1 :2 ,  Y1:2 is independent of 
Y2:2 -- Yl:2 and X1:2 ai~' Y1:2 has log-concave density. 

Using Lemma 14.B.9 of Shaked and Shanthikumar (1994), it follows from (3.2) that 
lr 

X 2 : 2  = (X2:2  - -  X l : 2 )  ~- X l : 2 ~ ( Y 2 : 2  - -  Y l : 2 )  + Y l :2  = Y2:2.  

That is, 
lr 

X2:2-->Y2:e. [] 
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In the light of the coun te r - example  of Boland  et al. (1994) as discussed in the firs! 

section, the result  of T h e o r e m  3.1 on the life of a paral le l  system of two componen t s ,  

canno t  be ex tended  beyond  the case n = 2. 
lr 

Since under  the a s sumpt ions  of Theo rem 3.1, X 2 : 2 ~ Y 2 :  2, and X~:2 2~- Y~:2, one 

might  wonder  whether  the vector  (X1:2, X2:2) is greater  than  the vector  ( Y~ :2, Y2:2) in 

the mul t ivar ia te  l ikel ihood rat io order ing sense. The answer is in the negative even in 

the case when the Y's are identically dis t r ibuted as shown by the next counter  exampk:. 

Example  3.1. Let )q = 3, 2~ = 5, )~* = ),* 4. The jo in t  densfly of (X~ :~, X~ ~) is 

f ( x l , x 2 )  15[e -(5x1+3~'1 + e  -13x'+ 5x')] for-\1 < - \ )  

and that  of(Y1:2,  Y2:2) is 

g ly l ,  )'2) = 16(2!)e -4° ' '  +Y~), for .vl < Y2. 
lr 

In o rde r  to prove  that  (X~:2, X2:2)~(Yl:2, Y22), we have to show that  

f ( X l ,  x2 )g (Yl ,  Y2) ~ f ( x 1  V Yl, X2 V yZ),(/(X1 A Yl, -\'2 A 1,'2) t3.3) 

holds.  

N o w  for Xl < xe and Yl < Y2, 

,/"(XI' X2),q(Yl, Y2) = 15 × 16(2!)[e 15Xl+3X2+8y) -}- e ~3Xx+SX,+s~,_ ], {3.4) 

and  

f ( x  1 V Yl, X2 V y2)g(x1 A Yl, x2 A Y2) 

1 5  x 1 6 ( 2 ! ) [ e  [ s l <  ,J . . . . . .  , , . 1+  3 ~ , ,  '~ .,,:,i+ 8~x ,, ,,~j + e f 3 ~ <  ,~ ~, ,~+ 3{.~e ,~, v , i +  s~.~ ,, , .~1]. 

(3.5} 

At Xx = 4, x2 = 46, Yl = 41, )'2 = 43, we find that  the value of(3.4) is 240(2!) [e ,~,~4 
+ e s78] and that  of(3.5) is 240(2!} [e 531 + e s41] showing thereby that  (3.3) does 

not  hold  in this case. 

lr 
A na tu ra l  ques t ion to ask is whether  for n > 2, (2~ . . . . .  2n)~(/ .*  . . . .  ~* ,/~,, ) implies 

lr 
X:~: ,>  Y2:,,? The next example  shows that  for n = 3, even hazard  rate o rder ing  does 

not  ho ld  between X2:, and  Y2:,, p rov ing  thereby that  for a rb i t r a ry  n, Theorem 1.1 

canno t  be s t reng thened  from s tochast ic  o rder ing  to hazard  rate order ing.  

Example  3.2. The  survival  funct ion of Xz:3 is 

F2:3(X ) -- F I ( x ) F 2 ( x ) F 3 ( x  ) + F I ( x ) F 2 ( x ) F 3 ( x )  q- F 2 ( x l F l ( X ) F 3 ( x )  

q- F 3 ( x ) f  I ( x )F2 (x )  

= F2(x)F3(x) + F2(x)Fl(xJF3(x) + F3(X)Fl(X)F2(x) 

= e-S~[e ~'x + e <~x + e ~'~ -- 2], 13.6) 

in the case of  exponen t ia l  r a n d o m  variables.  Here s 21 + 22 + 23. 
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m 
Let Z = (40, 10, 1) and/~* = (40, 5.5, 5.5). Then obviously, 2 ~ 2 " .  But the ratio of 

the survival functions of X2:3 to that  of Y2:3 

e 4 °x  + e l ° x  + e x -  2 

e 4 °x  + e 5"5x + e T M  --  2 

is not  m o n o t o n e  in x. This can be seen by verifying that  the values of this ratio at 0.01, 

0.07 and 0.25 are 1.0013, 1.0084 and 1.00025, respectively. This ratio should have been 
lr 

increasing in x in order  for the hazard rate ordering, X2:3 --~ Y2:3 to hold. 

As discussed earlier and as pointed out  by Boland et al. (1994), the hazard rate of 

X,: , ,  the lifetime of a parallel system of n components  is not  Schur concave in 2 for 
n > 2. However,  we prove in the next theorem that the reversed hazard rate of X,: ,  is 

Schur convex in ~ for any n > 1. 

Theorem 3.2. Let  X1 . . . . .  X ,  be independent exponential random variables with Xi 

having hazard rate ).i for  i = 1 . . . . .  n. Then the reversed hazard of  X,: ,  is Schur convex 

in 4. That  is, i f  Y1 . . . . .  Y, is another set o f  independent exponential random variables 
with parameters (Z*, ... ~* ,/~, ), then 

Proof. For x > O, the distribution function of Xn:. is 

F,:,(x) = f i  [1 - e -~'x] 
i - 1  

with the reversed hazard  rate 

d 1 + (2ix)e -'~':' 
F,:,(/~, x) = q-lnr,:,(X)ax = -  ~ i - - - ~ "  (3.7) 

X i = l  

Since for x > 0, the ith term in the summat ion  (3.7) is convex in 2ix, i = 1, . . . ,  n, it 
follows that  F,:,(2, x) is Schur convex in (21, . . . ,  2,) for each x (cf. Marshall  and Olkin, 
1979, p. 64). [ ]  

The above result partially strengthens Theorem 2.1 of Pledger and Proschan  (1971) 

from stochastic ordering to reversed hazard  rate ordering for the largest order  
statistics. 
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