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Abstract 

It is well known that the normalized spacings of a random sample from a DFR (IFR) 
distribution are stochastically increasing (decreasing). In this note we strengthen this result to 
show that if the parent distribution is DFR, the successive normalized spacing increase in the 
failure rate ordering (which implies stochastic ordering) sense. We also study the joint distribu- 
tion of the normalized spacings when the parent observations are not necessarily identical. It is 
shown that when the observations are independent with (possibly different) log-convex densit- 
ies, the joint distribution of the normalized spacings is arrangement increasing. 

Key words: Order statistics; Joint likelihood ratio ordering: Failure rate ordering: Stochastic 
ordering: Schur functions; Majorization; Arrangement increasing functions 

I. Introduction 

In rel iabi l i ty  theory  and survival  analysis,  the nonpa ra me t r i c  classes of increasinq 

Jailure rate ( IFR) and decreasing fai lure rate (DFR)  d i s t r ibu t ions  play an impor t an t  

role. There  is a vast  l i te ra ture  on s tochast ic  inequal ies  and  order  re la t ions between the 

var ious  statist ics when the observa t ions  come from such dis t r ibut ions .  

Let X~ . . . . .  X .  be a r a n d o m  sample  of size n from an absolu te ly  con t inuous  

d i s t r ibu t ion  with densi ty  function J; failure rate function rF, d i s t r ibu t ion  function 

F and survival  function /5= 1 - F .  As is the convent ion,  we shall denote  by Xi , the 

ith o rde r  stat is t ic  of a sample  of size n. Let  Di : ,  = (n--  i + 1 ) (Xi : , - -  X i ~:,) denote  the 

ith normal i zed  spacing, i =  1, . . . ,  n, with X o : . ~ 0 .  It is well known  that  D~ . . . . . . .  D . : .  

are independen t  and  ident ical ly  d i s t r ibu ted  if and  only if {XI . . . . .  X,,I 
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is a random sample from an exponential distribution. Barlow and Proschan (1966) 
proved the following result on stochastic ordering between the successive normalized 
spacings from DFR distributions. 

Theorem 1.1 (Barlow and Proschan, 1966). Let X1 . . . . .  Xn be a random sample of size 
n from a DFR distribution. Then 

sl 
(a) Oi:n~-.Di+l:n, i = l , . . . , n - - 1 ,  

st >~i for fixed i. (b) Di: n+ 1 ~--Di:n, n 

Similar results hold for the 1FR case with the inequalities reversed in (a) and (b) 
above. Later Pledger and Proschan (1971) partially extended this result to the case 
when the random variables are independent with proportional decreasing failure rates. 
Kim and David (1990) have also obtained some results on spacings from IFR (DFR) 
distributions. 

In Section 2 we strengthen the above result of Theorem i. 1 from stochastic ordering 
to failure (or hazard) rate ordering. If F(G) denotes the survival function of a random 
variable X(Y) ,  we say that X is greater than Y according to failure rate ordering 

(written as X f~Y) if F(x)/G(x)  is nondecreasing in x. In the case of continuous 
distributions, this is equivalent to the failure rate of F being uniformly smaller than 
that of G. If f (g) is the density function of F(G) and f (x) /g  (x) is nondecreasing in x, 
then we say that X is greater than Y according to likelihood ratio ordering and write it 

¢'r 
as X ~>Y. Likelihood ratio ordering implies failure rate ordering, which in turn implies 
stochastic ordering. For some other properties of these orderings, see Bickel and 
Lehmann (1975) and Joag-dev et al. (1995). We also show in this section that, 
under the above conditions, the normalized spacings are also ordered according to 
dispersive ordering. In Section 3, we look at the vector of Di:,'s as a whole and 
establish that they are jointly likelihood ratio ordered (cf. Shanthikumar and 
Yao, 1991) when the parent densities are log-convex. 

2. Failure rate and dispersive orderings between normalized spacings 
from DFR distributions 

We shall need the following lemmas to prove our main results. 

Lemma 2.1. Let ~l (x, y) and ~2 (x, y) be positive real-valued functions such that 
(i) ~02 (x, y) is TP2, that is, for Yl ~Y2, 

~z(x, y2) 
is nondecreasing in x, 

02 (X, Yl) 
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( i i ) /or 51 ~<Y2, 

~1 (x, y2) 
is nondecreasin.q in x, 

~ 2 ( x , y , )  

(iii) for each ,fixed x, 

~, (x, y) 
is nondecreasinq in y. 

11/2 (X- V} 

Then for x~ <~x2, Yl ~<Y2, 

04t~,(xz ,  Y2)~2(xl, Yl)--~,(x*,  yl)~2(x2, Y2) (2.1l 

>/I1/l (X l, Y2) i1/2 (X2, Y l ) -- I/t 1 (X2, Yl ) I//2 (X 1, Y2 ). 12.2) 

Proof. Since ~1 (x,y)/~z(x,y)  is nondecreasing in x and y, it follows that for xx <~.x2, 

)'t ~<Y2, 

I//1 (X2, Y2) I[I1(Xl,Y1) I/II(X1,Y2) I//1(X2, yl  ) {'~ "~) 
~2(x2, Y2) ~ 2 (X 1, y 1 } ~" I/t 2 (X 1, ) ' ~ - 2 )  ~2(X2, Yl) . . . .  

Also it follows from the TP2 property of ~92 that for x~ ~<x2, ya ~Y2, 

1112(X2, Ye)l/12(Xl,Yl)>~12(Xl,Yi)~12(x2,Yl). {2.4) 

The required result follows by multiplying the inequalities (2.3) and (2.4) and noting 
that the left-hand side of (2.3) is nonnegative. 

Lemma 2.2. Let 

~ ( x '  Y)= f " - ~ (  x ) 
77/_ i+  Y , 

1 l l2 (X ' y )=rn - i+ l (  X ) 
n - 7 +  l ~y ' 

where F is DFR. Then ~1 and t~2 satisfy the conditions of Lemma 2.1 .lbr 1 ~<i~<n--1. 

Proof. 

ln~2(x'y21}~--(n--i-{-1)Ilnr('n--¥~2(x,y, i--~- 1 - 4 - Y 2 ) - - l n F ( 7 - - ~ q - Y l ) I "  

On differentiating this with respect to x, we get 

C.~" (~/2(X, y l ) J  rF n - - i + l  " \ n - - l t t  / 

~>0 for yl~<Y2 

since rv(x), the failure rate of F, is decreasing in x. 
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Hence ~2(x, yz)/~12(X, Yl) is nondecreasing in x for Yl ~<Y2, thereby proving the 
first part. 

The rest of the proof follows on the same lines. [] 

Lemma 2.3. Let ~91(x,y) and ff2(x,y) satisfy the conditions of Lemma 2.1 and let 
(II1, Y2) be a bivariate random vector with joint density f (y l, Y2 ) satisfyin9 

f(Ya, Yz)>~f(Yz, Yl) for yl <.Yz. (2.5) 

Then for xl <~x2, 

E [q~l (x~, rz)] _< E [ ~  (x2, r2)] 
E [~2(xl, Y~)] "~E [~2(x2, r l ) ]  

Proof. For xl ~<x2, 

E[¢~(x2, rz)¢~(x~, Y,)]-/~[¢,(Xl, r2)q,z(x~, rl)] 

= f f~l ~ y2 [~III(x2'y2)O2(x"Yl)-Oa(xl'Y2)O2(x2'Ya)] f(Yl'y2)dy' dy2 

+ ~ [  [~,~(x2,y~)O~(x~,y,)-Ol(xl,y~)O2(x~,yl)] f(y~, y~) dy, dy~ 
.I dy 1 > Y2 

= f [{~II(X2'Y2)[/12(xI'Yl)--I/ll(XI'Y2)I/12(x2'Yl)} f(YI' Y2) 

+ {4,1 (x~,yl)q,~(xl,y~)-q,~(x,,y~)q,2(xz, y~)} f(y~, y~)] dy~ dy~ 

(on making a change of variables in the second integral) 

[@I(x2 'Y2 )~ I2 (x I ' y l ) - -OI (x I 'Y2 )O2(x2 'Y l )  

+Ol(x2,yl)@2(xa,y2)--Ol(xl,Yl)O2(x2,Y2)] f(Ya, Y2)] dyl dyE 

~>0. (2.6) 

The inequality in (2.6) follows by noting that for xl <~x2, Yt <~Y2, 

~II (x2 ,Y2)~I2(xI ,y l ) - -OI(XI ,Y2)O2(x2 ,Y l )  

~f fI l (Xl ,yl) f f I2(x2,  Y2)--ffIl(X2, Y l ) ~ 2 ( x l , y 2 )  (2.7) 

(from Lemma 2.1) and by multiplying (2.5) with (2.7). Since by Lemma 2.1, the 
integrand in (2.6) is nonnegative, the required result follows. [] 

¢'r 
Remarks. (1) If Y1 and Yz are independent random variables such that Y1 ~< Y2, then 
(2.5) is obviously satisfied and consequently Lemma 2.3 will hold in this case. 
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(2) Lemma 2.3 generalizes the result contained in Lemma 2 of Bickel and Lehmann 
(1975). 

Now we prove our main theorem. 

Theorem 2.1. Let X1 . . . . .  X ,  be a random sample of size n from a DFR distribution. 
Then 

fr 
(a) Di:n~<Di+l:,, i=1  . . . . .  n - - l ,  I2.8) 

fr 
(b) Di:n+l<~Di:n, n>~iforfixed i. (2.9) 

Proof. (a) Let f~:. denote the probability density function of Xi:., i=  1 . . . . .  n. The 
survival function of Di:. is 

P[Di:.> x] = e [ ( n - - i  + 1){X/:. - X i _  1 :hi >X] 

f[f(x/(n-i+ ,)+u)]" '+1 
= e--(u) .1i-1 :.(u) du 

F x - n - i + l  

n-- i+ l t- Y,-i) , (2.10) 

where C(i, n) is a normalizing constant and Y{i-1)=max{X1 . . . . .  Xi 11, Xi's being 
independent copies of X. 

We have to prove that for xl~<x2 and 1 <~i<~n-1, 

P [ D i + I  :n > x 2 ]  ~ P [ D i + I  :n > X I ]  

" e [o,---.-> ' 

that is, to prove that, 

E [ F " - i ( x 2 / ( n - i ) +  Y{~))] ) E[F"-~(Xl / (n - i )+  Y~)] 

E [ F " - i + l ( x 2 / ( n - i + l )  + Y . - o ) ]  E l F "  i + l ( x l / ( n - i + l ) +  Y,_o)]" 

t2.11) 
where Y(~=max{X, . . . . .  X2~-1} and where (X~ . . . . .  Xz i - l )  are 2 i - 1  independent 
copies of X. Let 

(x) Ilt l ( X, y ) = , r  n - i ~ "]- y , 

02(x' Y)=f"-'+l( x ) 
n - - i + l  +-y " 
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Then (2.11) is equivalent to 

E[~kl(X2, Y(~))] >_ E[~l(xa, Y(~))] (2.12) 

The proof of (2.12) follows from Lemmas 2.2 and 2.3 since Y~i-1) and Y(~) are 
( r  -A- 

independent and Y(i 1 ) ~ Y ( i )  • 

(b) We have to prove that for xl ~<x2 and i = 0  . . . . .  n -  1, 

P[Di+l:n>X2] >~ P[Di+I:n>x1] 
-P[Oi+ l : n + l  > X2~] ~" P [ O i ~ T : n + l  > X~I] " 

From (2.10) 

P[Di+I:">x]=C(i+I 'n)E[F" i (  xn~ + Y~i))] 

= C ( i +  l, n)E[~ka(x, Y(i))] (2.13) 

and 

= C ( i +  1, n+ 1)E[O2(x, Y(~)]. (2.14) 

Proving (b) is equivalent to showing that 

E EEOa(xz, Y(1))]>~ [~9,(x,, Y(i))] (2.15) 
EE¢z(x2, Y(~))]~'EE~,(xx, Y(~)] ' 

where again Y(0 and Y(~) are independent as in the first part. The proof of(2.15) follows 
from Lemmas 2.2 and 2.3. [] 

Barlow and Proschan (1966) have shown that spacings of i.i.d. DFR random 
variables have also DFR distributions. Bagai and Kochar (1986) proved that if 
G ~ F and if either F or G is DFR then G is less dispersive than F (G disp ~< F) in the 
sense that G - l ( v ) - G - l ( u ) < ~ F - l ( v ) - F - l ( u )  for O<~u<<,v<~l. The proof of the 
following theorem follows from the above results. 

Theorem 2.2. I f  S 1 . . . . .  X n is a random sample from a DFR distribution, then for 
i=1  . . . .  , n - 1 .  

disp 
(a) Di:n <~ Di+l:n, 
(b) var (Di: n) ~< var (Di + 1:.), 

disp 
(c) /Ji:.+l ~< Di:., 
(d) var(Di:,+l)<~var(Di:.). 
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3. Joint likelihood ratio ordering between the normalized spacing 
from distributions with log-convex densities 

In the previous sections we discussed some stochastic orders between the nor- 
malized spacings in terms of their marginal distributions. We know that the nor- 
malized spacings are independent only if the parent distribution is exponential. It is 
argued that in the case of dependent random variables, studying only the stochastic 
ordering between the marginal distributions may not be very useful in revealing 
monotone tendencies between dependent variables because the dependence informa- 
tion is being ignored. Realizing this, Shanthikumar and Yao (1991) introduced some 
new orderings of random variables for studying the stochastic relationships between 
the components of a random vector. We start our discussion with the extension of the 
idea of likelihood ratio ordering. For two independent random variables X~ and X 2. it 

,(r 
is known that X1 ~<Xz if and only if 

E[4~ix,, X~)]>EE4,(X2, X~)], V0e.~<~, I,~.1) 

where 

%~: {4': 4,~x2, x~)<~O(Xl, xz), VXl~X2}. !3.?_~ 

Motivated by the above characterization of likelihood ratio ordering, Shanthikumar 
and Yao (1991) extended this concept to the bivariate case as follows. 

Definition 3.1. For a bivariate random variable (X 1, X2  ), X 1 is said to be smaller than 
,:'r : j 

X2 according to joint likelihood ordering (X1 <Q X2)i f  and only if (3.1) holds. 

It can be seen that 

/r j 
-X1 ~ X 2  .¢:;> t ~ ( f J g r ,  

w h e r e / ( . , .  ) denotes the joint density of (X1, X2). 
As pointed out by Shanthikumar and Yao (1991), joint likelihood ratio ordering 

between the components of a bivariate random vector may not imply likelihood ratio 
ordering between their marginal distributions, but it does imply stochastic ordering 

, ,  {r : .j s~ 

between them (that is, a l  <~ X2 ~ X 1  K-X2). 
A bivariate function q~eN/r is called arrangement increasing (AI). Hollander 

et al. (1977) have studied many' interesting properties of such functions, although, 
apparently, they did not relate it to the notion of likelihood ratio ordering. 

The above idea can be extended to compare the components of an n-dimensional 
dr j / ' r : j  

vector X=(X1  . . . . .  X,).  We define X1 ~ ... ~< X,  if the joint density,t(xl . . . . .  x,) of 
X is an arrangement increasing fimction. (See Marshall and Olkin (1979) for the 
definition of an arrangement increasing function on JR".) 
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In a different context,  Rober t son  and Wright  (1982) studied a subclass of arrange-  
ment  increasing functions on ~", which they call ISO* functions, as described below. 
Let x and y be two vectors on ~n such that  J s Z i = l y i < ~ y ~ i = ~ x i ,  j = l  . . . . .  n - l ,  

n n W and Y ~ = ~ y ~ = ~ : ~ x i .  e shall denote  this partial  ordering between the vectors by 

x ~ , .  

Definition 3.2. A real-valued function q~ defined on a set d c ~" is said to be ISO* and 
~ '  if q~ (x) ~< ~b (y), Vx*~y .  

As ment ioned  earlier, an ISO* function is a r rangement  increasing but  the converse 
is not  true. It is easy to see that  the joint  d e n s i t y f ( x l ,  x z )  o f a  bivariate r a n d o m  vector  
(X1, Xz)  is ISO* if and only if the condit ional  density of  X2 given X l + X z = t  is 
monoton ica l ly  increasing for each fixed t. 

We shall p rove  in this section that  the joint  density of  the normal ized spacings is 
ISO* when the joint  density of the parent  observat ions  is convex. This will hold, in 

part icular ,  when the X~'s are independent  (but not necessarily identical) with log- 
convex densities. Shaked and Tong  (1984) have obta ined a different kind of result on 
spacings from dependent  observations.  

The  above  concepts  are closely related to major iza t ion  and Schur-convexity of  
functions on N". As we shall need them in the sequel, we define them below. 

Let { x ~  ~< x~2)~<... ~< x~,)} denote  the increasing a r rangement  of  the componen t s  of  
the vector  x = ( x l ,  x2, . . . ,  x,). The vector  y is said to m a j o r i z e  the vector  x (written as 

m x ~ y )  if x~j ' ~ ~ ' J  n n i = x y(i) -< L, i = 1 xtl), J = 1, . . . ,  n -- 1, and E i = ~ Y(i) = ~ i = 1 X(1). 

Definition 3.3. A real-valued function ~b defined on a set d =  ~" is said to be 
m 

Schur-convex (Schur-concave) on z¢ if x <.%v ~ q~(x) ~< (~>) ~b(y). 

We shall need the following l emma  to prove  our  next theorem. 

L e m m a  3.1. L e t  dl >~ 0, d~ >~ 0, i = 1 . . . . .  n, be real  n u m b e r s  and  let 

J di 
u J = i  ~=-1 n - i +  l ' j = l  . . . . .  n. 

T h e n  

Uj = 
i=1 n - - i +  l 

m 
d'*<d ~ v~<u. (3.3) 

Proof.  Obviously,  the componen t s  of u (v) are increasing as the di's (d/'s) are non- 

negative. Also ~ i = 1 ui = Y~ 7= x vi = 2` i = 1 i = 2, i= 1 d i .  
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Let d'~< d. Then 

b/i~-- E 
i=1 i = l l = l  n - l - t - 1  

J (n--j)  =E 
i=1 

J 
-<E 

i=1 

J 
=E 

i=1 

( d l  -k-d2 + " "  -t- di)  
(n-- i ) (n-- i+ 1) 

(n--j)  
d' d'~+.. +all) 

( n _ i ) ( n _ i + l ) (  1+ 

vi for j =  1, 2 . . . . .  n, 

since J d-<vJ d' ,'-1, n - l ,  a n d ~ i = l d i = ~ i = l d l .  ~ i = 1  i ' ~ ' / ' i = l  i ~ J - -  "' '~ n n 
m 

It follows that v~<v. [] 

t3.4) 

Theorem 3.1. Let the joint density j x (X  l . . . . .  X, )  of X=(X1  . . . . .  X,)  be convex. Then 
the joint density of D=(D1 . . . . . . .  D,: , )  is ISO*. 

Proof.  Let Y~ = Xi: ,  denote the ith order  statistic, i =  1 . . . . .  17. Then the joint  density of 

Y=(Y1, - - - ,  Y,) is 
( 

gv(Yl, 3;2 . . . . .  y , ) = / ~ e f x ( Y j l ,  Yj2 . . . . .  Yj.) if Yl ~<Y2 ~<"" ~<Y,, (3.5) 
/ ,0 otherwise, 

where Y~e denotes summat ion  over all permutat ions  ( j l , j 2  . . . . . .  in) of n integers 

{1,2 . . . . .  n}. 
F rom this we obtain the joint density of the normalized spacings 

D=(D1 . . . . . . .  D, : . )  as 

Oo(dl, d2 . . . . .  d . )=~ , f x  (ujl, u i2 . . . . .  uj,), (3.6) 
P 

i where u i=~j=ld j / (n - - j+  1 ) , j =  1, 2 . . . . .  n. 
Since Y, efx(uj l ,  uj2 . . . .  , uj,) is a Schur-convex function (cf. Marshall  and Olkin, 

1979, pp. 82-83), the required result follows from Lemma 3.1 above. 5J 

In particular if Xi ' s  are independent with log-convex densities, the following result 

holds. 

Theorem 3.2. Let X1, X2, ..., X ,  be independent random variables with log-convex 
densities. Then the joint density of D is ISO*. 

Proof.  Let Yi(') denote the density of Xi, i =  1 . . . . .  n. Since gi( .)'s are assumed to be 
log-convex and the variables are nonnegative,  it follows from Marshall  and Olkin 
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(1979, p. 85) that the joint density, 

g g ( Y l ,  Y2 . . . . .  f i n ) : 2  f i  gk(Yji), 
P k - l  

of Y is Schur-convex. The required result follows on the lines of Theorem 3.1. 

As pointed out earlier, the joint density of  D being ISO* implies that its component  
r andom variables are ordered according to joint likelihood ratio ordering. This fact is 

stated in the following corollary. 

Corollary 3.1. Under the conditions o f  Theorems 3.1 and 3.2, 
( r : j  ~ { r : j  ~(r:j 

DI:,  <~ 12Z:n <~ "'" <, Dn:n. 

Remarks. (1) If a density is log-convex, it is DFR,  but the converse is not  true. 

Theorem 3.2 establishes a stronger ordering between the normalized spacings than 

does Theorem 2.1 under  a stronger condit ion on the parent  distributions. 

(2) Results parallel to Theorem 3.2 can be obtained if the parent distributions are 

log-concave, but otherwise arbitrary. However,  we do not know whether results 

parallel to Theorem 2.1 hold for the IFR case. 

,, ~r:j ~<X2. However,  (3) As pointed out earlier, in general, 2~ 1 ~< X2 may not imply X1 ~r 

one can show that if Xt  . . . . .  X ,  is a r andom sample from a distribution with 

log-convex density, then 
~r #r 

Dt:n <~"" <~Dn:,. 

The proof  of this result is similar to that of Theorem 2.1 and hence the details are 

omitted. 
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