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a b s t r a c t

Let Rn be the range of a random sample X1, . . . , Xn of exponential random variables with
hazard rate λ. Let Sn be the range of another collection Y1, . . . , Yn of mutually independent
exponential random variables with hazard rates λ1, . . . , λn whose average is λ. Finally,
let r and s denote the reversed hazard rates of Rn and Sn, respectively. It is shown here
that the mapping t 7→ s(t)/r(t) is increasing on (0,∞) and that as a result, Rn =
X(n) − X(1) is smaller than Sn = Y(n) − Y(1) in the likelihood ratio ordering as well as
in the dispersive ordering. As a further consequence of this fact, X(n) is seen to be more
stochastically increasing in X(1) than Y(n) is in Y(1). In other words, the pair (X(1), X(n)) is
more dependent than the pair (Y(1), Y(n)) in themonotone regression dependence ordering.
The latter finding extends readily to the more general context where X1, . . . , Xn form a
random sample from a continuous distribution while Y1, . . . , Yn aremutually independent
lifetimes with proportional hazard rates.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let X1, . . . , Xn be a random sample of exponential random variables with hazard rate λ. Let Y1, . . . , Yn be mutually
independent exponential random variables with hazard rates λ1, . . . , λn such that

(λ1 + · · · + λn)/n = λ. (1)

It seems plausible that on average, the homogeneous sample would be less variable than the heterogeneous sample. This
intuition was confirmed by Kochar and Rojo [1], who exhibited a stochastic order relation between the ranges

Rn = X(n) − X(1), Sn = Y(n) − Y(1) (2)

derived from the sets of order statistics X(1) < · · · < X(n) and Y(1) < · · · < Y(n). Specifically, they established that for all
t ∈ R,

F(t) ≡ Pr(Rn 6 t) > Pr(Sn 6 t) ≡ G(t). (3)

This result was recently extended by Kochar and Xu [2], who proved that the mapping t 7→ G(t)/F(t) is increasing on
R+ = (0,∞). Thus Rn is smaller than Sn in the reversed hazard rate ordering.
The main purpose of this note is to strengthen relation (3) in two directions, one of which involves the densities f and g

of Rn and Sn, respectively. More precisely, it is shown here that Rn is smaller than Sn in the likelihood ratio ordering and in
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the dispersive ordering, viz.

(i) Rn≺LR Sn, i.e., the mapping t 7→ g(t)/f (t) is increasing on R+;
(ii) Rn≺DISP Sn, i.e., F−1(β)− F−1(α) 6 G−1(β)− G−1(α) for all 0 < α < β < 1.

See Shaked and Shanthikumar [3] for a review of these orderings.
Define the reversed hazard rates of Rn and Sn at t ∈ R+ by

r(t) = f (t)/F(t), s(t) = g(t)/G(t),

respectively. It is proved in Section 2 that the mapping t 7→ s(t)/r(t) is increasing on R+. It is then shown in Section 3 that
statements (i) and (ii) are immediate consequences of this fact.
A further implication of this result is presented in Section 4, where X(n) is seen to bemore stochastically increasing in X(1)

than Y(n) is in Y(1) with respect to the monotone regression dependence ordering as defined, e.g., by Capéraà and Genest [4]
or Avérous et al. [5]. In view of thework of Dolati et al. [6], the conclusion extends readily to themore general context where
X1, . . . , Xn form a random sample from a continuous distribution while Y1, . . . , Yn are mutually independent lifetimes with
proportional hazard rates.

2. The ratio s/r is increasing

Let X1, . . . , Xn be a random sample of exponential random variables with hazard rate λ, and let Rn be its range, as defined
by (2). The reversed hazard rate of Rn at arbitrary t ∈ R+ is then given by

r(t) =
(n− 1)λe−λt

1− e−λt
≡ (n− 1)bλ(t). (4)

More generally, let Y1, . . . , Yn be mutually independent exponential random variables with hazard rates λ1, . . . , λn
satisfying condition (1), and let Sn be the corresponding range defined in (2). Kochar and Xu [2] show that the reversed
hazard rate of Sn is then of the form

s(t) =
∑
i6=j

aλi(t)bλj(t)
/∑

k

aλk(t), (5)

for all t ∈ R+, where here and in what follows, the sums run over all possible indices in {1, . . . , n}, and

aλi(t) =
λi

1− e−λit
, bλj(t) =

λje−λjt

1− e−λjt
.

This section contains a proof of the following result.

Proposition 1. Let r(t) and s(t) be defined by (4) and (5) for all t ∈ R+. The mapping t 7→ s(t)/r(t) is increasing on R+.

Remark 1. Note that this result does not extend to the case where for each i ∈ {1, . . . , n}, Xi is exponential with hazard rate
λ∗i , and Λ

∗
= (λ∗1, . . . , λ

∗
n) ≺ (λ1, . . . , λn) = Λ in the majorization ordering of Marshall and Olkin [7]. In other words, if

sΛ∗ and sΛ are the reversed hazard rates of Rn = X(n)−X(1) and Sn = Y(n)−Y(1), respectively, themapping t 7→ sΛ(t)/sΛ∗(t)
may not be monotone; take, e.g., n = 3 andΛ∗ = (0.1, 4, 6) ≺ Λ = (0.1, 1, 9).

Proof of Proposition 1. LetΛ = (λ1, . . . , λn) and introduce

uΛ(t) =
∑
i6=j

aλi(t)bλj(t), vΛ(t) = bλ(t)
∑
k

aλk(t),

so that (n− 1)s(t)/r(t) = uΛ(t)/vΛ(t). The mapping t 7→ s(t)/r(t) is increasing if for all t ∈ R+,

uΛ(t) v′Λ(t) 6 vΛ(t) u
′

Λ(t). (6)

Upon differentiation with respect to t , one gets

a′λi(t) = −aλi(t)bλi(t), b′λj(t) = −aλj(t)bλj(t),

and b′λ(t) = −aλ(t)bλ(t), where aλ(t) ≡ λ/(1− e
−λt) for all t ∈ R+. Consequently,

u′Λ(t) = −
∑
i6=j

{aλi(t)aλj(t)bλj(t)+ aλi(t)bλi(t)bλj(t)}

and

v′Λ(t) = −bλ(t)
∑
k

{aλk(t)aλ(t)+ aλk(t)bλk(t)}.
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Now observe that ifΛ∗ = (λ∗1, . . . , λ
∗
n) = (tλ1, . . . , tλn), one has

t2uΛ(t) = uΛ∗(1), t2vΛ(t) = vΛ∗(1)

and

t3u′Λ(t) = u
′

Λ∗(1), t3v′Λ(t) = v
′

Λ∗(1).

Thus upon multiplying by t5 on both sides of (6) and expanding, one can see that this inequality holds if and only if

uΛ∗(1) v′Λ∗(1) 6 vΛ∗(1) u
′

Λ∗(1). (7)

Hence it suffices to prove relation (7) for all choices of λ∗1, . . . , λ
∗
n or equivalently, to show inequality (6) for arbitrary

λ1, . . . , λn and t = 1.
Let a = aλ(1), b = bλ(1), ai = aλi(1) and bj = bλj(1) for all i, j ∈ {1, . . . , n}. It will be seen in the following subsections

that

− b

(∑
k

ak

)(
a
∑
i6=j

aibj

)
6 −b

(∑
k

ak

)(∑
i6=j

aiajbj

)
(8)

and

− b

(∑
i6=j

aibj

)(∑
k

akbk

)
6 −b

(∑
i6=j

aibibj

)(∑
k

ak

)
. (9)

This will be enough to conclude, because the terms on the left-hand side of relations (8) and (9) add up to uΛ(1) v′Λ(1)while
the terms on the right-hand side sum up to vΛ(1) u′Λ(1). �

Proof of inequality (8). This inequality is equivalent to∑
i6=j

aiajbj 6 a
∑
i6=j

aibj.

The latter is an immediate consequence of the following chain:∑
i6=j
aiajbj∑

i6=j
aibj

6

∑
k
akbk∑
k
bk
6

n∑
k
1/ak

6 a. (10)

The right-most inequality in (10) states that

1
a
6
1
n

∑
k

1
ak

or

1− e−λ

λ
6
1
n

∑
k

1− e−λk

λk
.

As the mapping t 7→ (1− e−t)/t is convex, this is an immediate consequence of Jensen’s inequality.
The middle inequality in (10) may be expressed alternatively as(

1
n

∑
k

1
ak

)(
1
n

∑
k

akbk

)
6
1
n

∑
k

bk

or (
1
n

∑
k

p(λk)

)(
1
n

∑
k

q(λk)

)
6
1
n

∑
k

p(λk)q(λk), (11)

where

p(λk) =
1
ak
=
1− e−λk

λk
and q(λk) = akbk =

λ2ke
−λk

(1− e−λk)2
.



1590 C. Genest et al. / Journal of Multivariate Analysis 100 (2009) 1587–1592

As shown, e.g., by Khaledi and Kochar [8], the mappings

t 7→ p(t) =
1− e−t

t
and t 7→ q(t) =

t2e−t

(1− e−t)2

are both decreasing on R+. Inequality (11) thus follows from an application of Čebyšev’s sum inequality; see p. 36 of
Mitrinović [9].
Finally, the left-most inequality in (10) amounts to(∑

i6=j

aiajbj

)(∑
k

bk

)
6

(∑
i6=j

aibj

)(∑
k

akbk

)
.

Rewrite the left-hand side of this inequality as{(∑
i

ai

)(∑
j

ajbj

)
−

(∑
k

a2kbk

)}(∑
k

bk

)
and the right-hand side as{(∑

i

ai

)(∑
j

bj

)
−

(∑
k

akbk

)}(∑
k

akbk

)
.

Upon canceling the first summand, which is common to both sides, one sees that inequality (10) holds provided that(∑
k

akbk

)2
6

(∑
k

a2kbk

)(∑
k

bk

)
,

but the latter follows from the classical Cauchy–Schwarz inequality. This completes the proof of inequality (8). �

Proof of inequality (9). This inequality is equivalent to(∑
i6=j

aibibj

)(∑
k

ak

)
6

(∑
i6=j

aibj

)(∑
k

akbk

)
.

In order to establish this fact, first observe that

n− 1
n

(∑
k

ak

)(∑
k

bk

)
6
∑
i6=j

aibj. (12)

Indeed, the right-hand side can be written alternatively as(∑
i

ai

)(∑
j

bj

)
−

∑
k

akbk,

and hence inequality (12) is equivalent to∑
k

akbk 6
1
n

(∑
k

ak

)(∑
k

bk

)
.

The latter may be re-expressed as

1
n

∑
k

p(λk)q(λk) 6

(
1
n

∑
k

p(λk)

)(
1
n

∑
k

q(λk)

)
,

where

p(λk) = ak =
λk

1− e−λk
and q(λk) = bk =

λke−λk

1− e−λk
.

Inequality (12) then follows from Čebyšev’s sum inequality, because the mapping t 7→ p(t) is increasing while the mapping
t 7→ q(t) is decreasing on R+. In the light of (12), inequality (9) is valid if(∑

i6=j

aibibj

)(∑
k

ak

)
6
n− 1
n

(∑
k

ak

)(∑
k

bk

)(∑
k

akbk

)
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or (∑
i6=j

aibibj

)
6
n− 1
n

(∑
k

bk

)(∑
k

akbk

)
. (13)

Upon writing the left-hand side of the latter inequality in the form(∑
i

aibi

)(∑
j

bj

)
−

∑
k

akb2k,

one can see that inequality (13) reduces to

1
n

(∑
k

bk

)(∑
k

akbk

)
6
∑
k

akb2k

or (
1
n

∑
k

p(λk)

)(
1
n

∑
k

q(λk)

)
6
1
n

∑
k

p(λk)q(λk),

where

p(λk) = bk =
λke−λk

1− e−λk
and q(λk) = akbk =

λ2ke
−λk

(1− e−λk)2
.

Now the mappings t 7→ p(t) and t 7→ q(t) are both decreasing on R+. Thus, inequality (13) is yet another consequence
of Čebyšev’s sum inequality. This establishes inequality (9) and completes the proof that the mapping t 7→ s(t)/r(t) is
increasing on R+. �

3. Consequences on variability

Formally stated and proved here are consequences (i) and (ii) of Proposition 1 announced in the Introduction. Both
of them describe the effect of heterogeneity on the degree of dispersion of the range in a sample of exponential random
variables.

Proposition 2. Let Rn be the range of a random sample of exponential random variables with hazard rate λ. Let Sn be the range
of another set of mutually independent exponential random variables with hazard rates λ1, . . . , λn meeting condition (1). Then
Rn≺LR Sn.

Proof. Let F and G be defined as per (3). If r and s denote the corresponding reversed hazard rates, it must be seen that the
mapping

t 7→
g(t)
f (t)
=
G(t)
F(t)
×
s(t)
r(t)

is increasing on R+. This comes from Proposition 1 and the fact that the mapping t 7→ G(t)/F(t) is increasing on R+. �

Remark 2. The increasingness of themapping t 7→ G(t)/F(t) onR+means that Rn is smaller than Sn in the reversed hazard
rate ordering. Thus Proposition 2 may be viewed as deriving from Proposition 1 together with Theorem 1.C.4 in Shaked and
Shanthikumar [3]. Also since X(1) and Y(1) have the same log-concave distribution, viz.

Pr(X(1) > t) = Pr(Y(1) > t) = e−(λ1+···+λn)t = e−nλt

for all t ∈ R+, results from Shanthikumar and Yao [10] imply that X(n)≺LR Y(n), as already pointed out by Kochar and Xu [2].

Proposition 3. Under the same conditions as above, Rn≺DISP Sn, and in particular var(Rn) 6 var(Sn).

Proof. Put ` = 1/(n − 1) > 0 and let X` and Y` be distributed as F ` and G`, respectively. The ratio of their densities may
then be expressed as a product of positive increasing functions, viz.

`G`−1(t)g(t)
` F `−1(t)f (t)

=

(
G(t)
F(t)

)`
×
s(t)
r(t)

.

Accordingly, one has X`≺LR Y` and hence X` is smaller than Y` in the hazard rate ordering. Thus the mapping

t 7→ H`(t) =
1− G`(t)
1− F `(t)

=
1− G`(t)
e−λt
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is increasing on R+. Clearly, dH`(t)/dt > 0 if and only if

g(t) 6 λ(n− 1)G(t){G−`(t)− 1}

for all t ∈ R+. As the right-hand side equals f ◦ F−1 ◦ G(t), it follows that g ◦ G−1(u) 6 f ◦ F−1(u) for all u ∈ (0, 1), whence
Rn≺DISP Sn by Equation (3.B.11) of Shaked and Shanthikumar [3]. �

Remark 3. In the case n = 2, Proposition 3 also follows from Theorem 3.7 in Kochar and Korwar [11], which states that
under the conditions of Proposition 2, the normalized spacings of the homogeneous sample are less dispersed than those of
the heterogeneous sample.

4. Consequences on dependence

As shown by Dolati et al. [6], Proposition 3 is equivalent to the following result, whose scope extends well beyond the
exponential case.

Proposition 4. Let X1, . . . , Xn be a random sample from some continuous distribution while Y1, . . . , Yn are mutually
independent lifetimes with proportional hazards, i.e., there exist a baseline survival function H̄ and positive scalars λ1, . . . , λn
for which Pr(Yi > t) = {H̄(t)}λi holds for all t ∈ R. Then Y(n)|Y(1)≺MRD X(n)|X(1).

This observation strengthens the conclusions of Dolati et al. [6], who established the same relation for the weaker right-
tail increasing ordering. Under the conditions of Proposition 4, therefore, one has κ(Y(1), Y(n)) 6 κ(X(1), X(n)) for anymargin-
free measure of concordance κ satisfying the axioms of Scarsini [12], such as Spearman’s rho or Kendall’s tau.
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