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Abstract

In this paper, we introduce a new copula-based dependence order to compare the relative degree
of dependence between two pairs of random variables. Relationship of the new order to the existing
dependence orders is investigated. In particular, the new ordering is stronger than the partial ordering, more
monotone regression dependence as developed by Avérous et al. [J. Avérous, C. Genest, S.C. Kochar, On
dependence structure of order statistics, Journal of Multivariate Analysis 94 (2005) 159–171]. Applications
of this partial order to order statistics, k-record values and frailty models are given.
c© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The concept of dependence between random variables is of utmost importance and it
has been well studied in the literature. Realizing the shortcomings of summary measures of
dependence like Pearson coefficient of correlation, researchers starting with Lehmann [21]
and Yanagimoto and Okamoto [28] started developing nonparametric functional measures of
monotone dependence involving the entire joint distributions and the conditional distributions
of the random variables. See Chapter 5 of Barlow and Porschan [3] for details where several
functional measures of positive dependence with varying degrees of strength have been
discussed. A nice thing about these monotone functional orderings is that if two random variables
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are dependent according to these functional measures, then the usual measure of dependence
like Kendall’s coefficient of concordance, Spearman’s coefficient and many other well-defined
coefficients of positive association will be nonnegative. Several partial orderings to compare the
relative degree of dependence between two pairs of random variables, say (X1, Y1) and (X2, Y2)

have also been studied. In most of the relevant literature, it is tactically assumed that the pairs

(X1, Y1) and (X2, Y2) have the same margins, that is, X1
dist
= X2 and Y1

dist
= Y2. Refer to

Kimeldorf and Sampson [18], Mosler and Scarsini [22] and Joe [13] for a unified treatment of
families, orderings and measures of monotone dependence.

In many practical situations, however, we need to compare the degree of dependence between
two pairs of random variables with different margins. Capéraà and Genest [5] presented several
dependence orders for this problem. For example, one order called, more stochastic increasing
(SI) is defined as follows. The dependence of Y1 on X1 is said to be less in the sense of SI than
that of Y2 on X2, if and only if, for 0 < u ≤ 1 and x ≤ x ′,

H2[x ′] ◦ H−1
2[x]

(u) ≤ H1[x ′] ◦ H−1
1[x]

(u),

where Hi[x] denotes the conditional distribution of Yi given X i = x , and the H−1
i[x]

stands for the
right continuous inverse of Hi[x] for i = 1, 2. However, as summarized in the books by Joe [13],
Nelsen [23] or Drouet-Mari and Kotz [8], many years of research into concepts and measures of
association show that the proper way of comparing the relative degree of dependence between
(X1, Y1) and (X2, Y2) is in terms of their associated copulas, implicitly defined in a unique
fashion by the relation

Ci (u, v) = Hi

{
F−1

i (u), G−1
i (v)

}
, u, v ∈ [0, 1],

where Hi is the joint cumulative distribution function of (X i , Yi ), and F−1
i and G−1

i are the
corresponding right continuous inverses of the marginal distributions. It is easy to see that the
notion of more SI as defined by Capéraà and Genest [5] is not copula-based. Hence, Avérous
et al. [2] suggested a modification of their definition by conditioning on the quantiles of the
marginal distributions. That is, the dependence of Y1 on X1 is said to be less in the sense of
SI than that of Y2 on X2, denoted by (Y1|X1) ≺SI (Y2|X2), if and only if, for 0 < u ≤ 1 and
0 < p ≤ q ≤ 1,

H2[ξ2q ] ◦ H−1
2[ξ2p]

(u) ≤ H1[ξ1q ] ◦ H−1
1[ξ1p]

(u),

where ξi p = F−1
i (p) stands for the pth quantile of the marginal distribution of X i for i = 1, 2.

They used this concept to compare the relative degree of dependence between two pairs of order
statistics of a random sample from a continuous distribution. It is proved there for i < j ,
the dependence of the j th order statistic on the i th order statistic decreases as i and j draw
apart. Subsequently, Khaledi and Kochar [17] further extended this result to the generalized
order statistics which include order statistics, k-record values and several other cases of ordered
random variables as special cases. Recently Dolati et al. [7] have used two modified weaker
copula dependence orders called more right-tail increasing (RTI) and more left-tail decreasing
(LTD) (see Avérous and Dortet-Bernadet [1]), to investigate the relative dependence between the
extreme order statistics when the sample consists of independent but non-identically distributed
observations with proportional hazard rates.

Avérous et al. [2] remark whether we could find suitable conditions under which more
stochastic increasingness could be replaced by stronger dependence orderings. In this paper,
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we introduce a dependence ordering called more reversed hazard rate (RHR) ordering which is
stronger than the more SI ordering to investigate the relative degree of dependence between two
pairs of order statistics and k-record values. It is shown that for i < j , the dependence of the j th
order statistic (k-record values) on the i th order statistic (k-record values) decreases, in the sense
of RHR dependence ordering, as i and j draw apart. For example, the dependence of Xn:n on
X i+1:n is more than that of Xn:n on X i :n for 1 ≤ i ≤ n − 1.

Definition 1. The dependence of Y1 on X1 is said to be less than that of Y2 on X2 according to
RHR dependence order, denoted by (Y1|X1) ≺R H R(Y2|X2), if and only if, for 0 < u ≤ v ≤ 1
and 0 < p ≤ q ≤ 1,

H2[ξ2q ] ◦ H−1
2[ξ2p]

(u) × H1[ξ1q ] ◦ H−1
1[ξ1p]

(v)

≤ H2[ξ2q ] ◦ H−1
2[ξ2p]

(v) × H1[ξ1q ] ◦ H−1
1[ξ1p]

(u), (1)

where Hi[x] denotes the conditional distribution function of Yi given X i = x , and ξi p = F−1
i (p)

stands for the pth quantile of the marginal distribution of X i for i = 1, 2.

This ordering may be attributed to Capéraà and Genest [5], although their original formulation
was not copula-based. If Y1 and X1 are independent, then (Y1|X1) ≺RH R(Y2|X2), if and only if
for 0 < p ≤ q ≤ 1,

H2[ξ2q ] ◦ H−1
2[ξ2p]

(u)

u

is increasing in u ∈ (0, 1], that is, for 0 < p ≤ q ≤ 1,

H2[ξ2q ](u)

H2[ξ2p](u)

is increasing in u ∈ (0, 1]. This condition is equivalent to (X2, Y2) being DTP (0,1), dependent
by total positivity with degree (0,1) as introduced by Hu and Yang [11] (see also Shaked [25]).
Obviously, if (1) holds and if (X1, Y1) is DT P (0, 1), then so is (X2, Y2). Hence, this order may
also be called more DTP (0,1) order. Setting v = 1 in (1), it holds that, for u ∈ (0, 1],

H2[ξ2q ] ◦ H−1
2[ξ2p]

(u) ≤ H1[ξ1q ] ◦ H−1
1[ξ1p]

(u),

proving that (Y1|X1) ≺RH R(Y2|X2) implies (Y1|X1) ≺SI (Y2|X2) and which in turn implies the
more well-known weaker dependence orderings like more PQD (or more concordance) ordering.
As mentioned in Avérous et al. [2], more PQD ordering implies

κ(X1, Y1) ≤ κ(X2, Y2) (2)

where κ(X, Y ) represents Spearman’s rho, Kendall’s tau, Gini’s coefficient, or indeed any other
copula-based measure of concordance satisfying the axioms of Scarsini [24]. In the special case
where F1 = F2 and G1 = G2, it also follows more PQD ordering which implies that the pairs
(X1, Y1) and (X2, Y2) are ordered by Pearson’s correlation coefficient, namely

corr(X1, Y1) ≤ corr(X2, Y2).

Analogously one may define the more hazard rate dependence order (see also Capéraà and
Genest [5]). The dependence of Y1 on X1 is said to be less than that of Y2 on X2 according
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to hazard rate (HR) dependence order, denoted by (Y1|X1) ≺H R(Y2|X2), if and only if, for
0 < v ≤ u ≤ 1 and 0 < p ≤ q ≤ 1,

H̄2[ξ2q ] ◦ H̄−1
2[ξ2p]

(u) × H̄1[ξ1q ] ◦ H̄−1
1[ξ1p]

(v) ≤ H̄2[ξ2q ] ◦ H̄−1
2[ξ2p]

(v) × H̄1[ξ1q ] ◦ H̄−1
1[ξ1p]

(u),

where H̄i[x] = 1 − Hi[x] denotes the conditional survival function of Yi given X i = x , and
ξi p = F−1

i (p) stands for the pth quantile of the marginal distribution of X i for i = 1, 2. If Y1
and X1 are independent, then (Y1|X1) ≺H R(Y2|X2), if and only if for 0 < p ≤ q ≤ 1,

H̄2[ξ2q ] ◦ H̄−1
2[ξ2p]

(u)

u

is decreasing in u ∈ (0, 1], that is, for 0 < p ≤ q ≤ 1,

H̄2[ξ2q ](u)

H̄2[ξ2p](u)

is increasing in u ∈ (0, 1].
This condition is equivalent to (X2, Y2) being DTP(0, 1), dependent by total positivity with

degree (0, 1) as introduced by Shaked [25]. This order may also be called more DTP (0, 1) order.
It is easy to see that, by setting u = 1, the more HR dependence order also implies the more
SI dependence order. However, the more HR dependence order does not imply the more RHR
order, and vice verse (see Capéraà and Genest [5]).

Before stating our main results, let us review the following concepts which will be used in
what follows.

Definition 2 (Shaked and Shanthikumar [26]). Let X and Y be two nonnegative random
variables with distribution functions F and G, respectively. Then

• X is said to be less dispersed than Y (denoted by X ≤disp Y ) if

F−1(β) − F−1(α) ≤ G−1(β) − G−1(α)

for all 0 < α ≤ β < 1, where F−1 and G−1 denote their corresponding right continuous
inverses. Equivalently, one has X ≤disp Y if and only if

F{F−1(u) − c} ≤ G{G−1(u) − c}

for every c ≥ 0 and 0 < u < 1.
• X is said to be smaller than Y in the convex transform order, denoted by X ≤c Y , if G−1 F(x)

is convex in x ≥ 0.
• X is said to be smaller than Y in the star order, denoted by X ≤∗ Y , if G−1 F(x)/x is increasing

in x ≥ 0.

Note that the convex transform order is also called more IFR order (cf. Kochar and Weins [19])
and X is IFR (increasing failure rate) if and only if it is convex ordered with respect to the
exponential distributions. Similarly, the star order compares the relative IFRA (increasing failure
rate average) property of two probability distributions.

Definition 3. A random variable X with distribution function F is said to be decreasing reversed
hazard rate (DRHR) distributed if, for u ≥ 0,

F(x)

F(x + u)



Author's personal copy

2176 S. Kochar, M. Xu / Journal of Multivariate Analysis 99 (2008) 2172–2184

is increasing in x ≥ 0, or equivalently, if its density exists, the reversed hazard rate

r̃X (x) =
f (x)

F(x)

is decreasing.

For a more comprehensive discussion and other details about DRHR, one may refer to Block
et al. [4].

The organization of the paper is as follows. In Section 2, we obtain some new results on
dependence among order statistics, which partly strengthen the results of Avérous et al. [2].
Section 3 is devoted to studying the dependence properties of record values, which strengthens
the result for k-record values in Khaledi and Kochar [17]. In Section 4, we obtain some new
results on dependence for the frailty model. We conclude our discussion with some remarks in
Section 5. The proofs of all the results are given in the Appendix.

2. Order statistics

In this section, we compare the relative degree of dependence between two pairs of order
statistics from two populations in terms of the more RHR dependence order. To prove our main
result, we will use the following lemmas.

Lemma 1. Let X and Y be two nonnegative continuous random variables with distribution
functions F and G, density functions f and g, respectively. If X ≤c Y , X ≥disp Y , and Y is
DRHR, then

G(G−1(x) − c)

F(F−1(x) − c)

is increasing in x ∈ A =
{
s ∈ (0, 1] : G−1(s) > c ≥ 0

}
.

Lemma 2. Let X1:n ≤ X2:n ≤ · · · ≤ Xn:n be the order statistics of a random sample of size n
from a standard exponential distribution. Then, for 1 ≤ i ≤ n and arbitrary positive integer m,

(a) X i :n ≤c X1:m .
(b) Xn+1:n+1 ≤c Xn:n .

Theorem 1. Let X1:n ≤ X2:n ≤ · · · ≤ Xn:n be the order statistics of a random sample of size
n from a continuous distribution with c.d.f. F and let Y1:n′ ≤ Y2:n′ ≤ · · · ≤ Yn′:n′ be the order
statistics associated with a random sample of size n′ from a continuous distribution with c.d.f.
G. Then, for 1 ≤ i < j ≤ n and 1 ≤ i ′ < j ′ ≤ n′,

(Y j ′:n′ |Yi ′:n′) ≺RH R(X j :n|X i :n)

holds for

i ′ ≤ i, n′
− i ′ ≥ n − i, j ′ − i ′ ≥ j − i = 1, n − j ≥ n′

− j ′,

or

i ′ ≤ i, n′
− i ′ ≥ n − i, j ′ = n′, j = n.

The following immediate consequences of Theorem 1 are of special interest.
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Corollary 1. Let X1:n ≤ X2:n ≤ · · · ≤ Xn:n be the order statistics corresponding to a random
sample X1, · · · , Xn from some continuous distribution. Then,

• (Xn+1:n+1|X i :n+1) ≺RH R(Xn:n|X i :n) for 1 ≤ i ≤ n;
• (Xn:n|X i :n) ≺RH R(Xn:n|X i+1:n) for 1 ≤ i ≤ n − 1;
• (X j :n|X i :n) ≺RH R(X i+1:n|X i :n) for 1 ≤ i ≤ n − 1 and j > i .

3. Record values

Let {X i , i ≥ 1} be a sequence of i.i.d random variables from a continuous population X , and
let k be a positive integer. According to Dziubdziela and Kopociński [9], the nth k-record value
from population X is defined as

R(n : k) = X Lk
n :Lk

n+k−1,

where Lk
n are the nth occurrence times of k-record values of X ,

Lk
0 = 1,

Lk
n+1 = min

{
j > Lk

n : X Lk
n :Lk

n+k−1 < X j : j+k−1

}
.

For k = 1, they are called the usual record values. It is shown in Khaledi and Kochar [17] that,
for i ≥ i ′, and j − i ≤ j ′ − i ′,(

R( j ′ : k)|R(i ′ : k)
)
≺SI (R( j : k)|R(i : k)).

In this section, we will strengthen this result to the more RHR dependence ordering. First, let us
introduce the following two Lemmas.

Lemma 3. Let R(n : k) be the nth k-record value from population X with standard exponential
distribution, then, for n′

≥ n ≥ 1, and k′, k ≥ 1,

R(n′
: k′) ≤c R(n : k).

Lemma 4. Let R(n : k) be the nth k-record value from population X with standard exponential
distribution, then, for n′

≥ n ≥ 1, and k′
≥ k ≥ 1,

R(n : k) ≤disp R(n′
: k′).

Now, we are ready to present the following theorem.

Theorem 2. Let R(n : k) and R′(n′
: k′) be the nth k-record value and n′th k′-record value from

two continuous distributions, then,(
R′( j ′ : k′)|R′(i ′ : k′)

)
≺RH R(R( j : k)|R(i : k)).

for i ≥ i ′ ≥ 1, k ≥ k′
≥ 1 and j ′ − i ′ ≥ j − i .

The following results are the immediate consequences of Theorem 2.

Corollary 2. Let R(n : k) be the nth k-record value from continuous distribution, then

• (R( j ′ : k)|R(i ′ : k)) ≺RH R(R( j : k)|R(i : k)) for j ′ − i ′ ≥ j − i and i ≥ i ′;
• (R( j : k)|R(i : k)) ≺RH R(R( j : k + 1)|R(i : k + 1)) for j > i .



Author's personal copy

2178 S. Kochar, M. Xu / Journal of Multivariate Analysis 99 (2008) 2172–2184

4. Frailty model

The well-known frailty model, which was first introduced by Vaupel et al. [30], is particularly
useful to handle heterogeneity left unexplained by observed covariates. Given that the frailty
random variable V = v, the conditional hazard rate function of the overall population random
variable X is given by

λ(t |v) = vλ0(t), for all t ≥ 0, (3)

where λ0(t) is the hazard rate function of the baseline random variable Y . The frailty
is considered basically unobservable and hence the individual level model in Eq. (3) is
unobservable. Gupta and Kirmani [10] considered the population model below where the hazard
function is considered to be a randomly drawn individual,

F(t) = E
[
G

V
(t)

]
, for all t ≥ 0,

where F and G are survival functions of X and Y . Proposition 2.1 in Gupta and Kirmani [10]
shows that

E(V |X > t) is decreasing in t ≥ 0,

which implies that there is some kind of negative dependence between X and V . In fact, X and
V are negatively likelihood ratio order dependence as shown by Xu and Li [27]. Now, if frailty
random variables V1 and V2 are from two populations, we may be interested in knowing which
one has more effect on its corresponding overall population random variable. The following
theorem answers this question.

Theorem 3. Let (X i , Vi ) be frailty model random vector for i = 1, 2. Then, V2 ≤∗ V1 if and only
if one of the following statements holds,

(i) (X1|V1) ≺RH R(X2|V2);
(ii) (X1|V1) ≺SI (X2|V2).

5. Concluding remarks

This paper extends the work of Avérous et al. [2] and Khaledi and Kochar [17] for comparing
the degree of dependence between two pairs of order statistics and k-record values from the same
continuous distribution through the stronger new more RHR dependence ordering. We partly
strengthen the main result of Avérous et al. [2] on dependence among order statistics. We also
strengthen the more SI dependence ordering result for k-record values in Khaledi and Kochar [17]
to the more RHR dependence ordering. We conjecture that the main result in Avérous et al. [2]
can be generalized to the more RHR ordering. Actually, if one can prove that for order statistics
from exponential distribution, X j :m ≤c X i :n holds for i ≤ j and m − j ≤ n − i , the result will
follow. But we have been unable to establish this result so far.
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Appendix. Proofs

Proof of Lemma 1. Note that, X ≤c Y , implies

f (F−1(x))

g(G−1(x))
is increasing in x ≥ 0.

That is,

r̃X (F−1(x))

r̃Y (G−1(x))
≥

r̃X (F−1(x∗))

r̃Y (G−1(x∗))

for 0 ≤ x∗
≤ x ≤ 1, where r̃X and r̃Y denote the reversed hazard rates of X and Y , respectively.

Setting,

x∗
= F(F−1(x) − c), c ≥ 0,

it holds that,

r̃X (F−1(x))

r̃Y (G−1(x))
≥

r̃X (F−1(x) − c)

r̃Y (G−1(x∗))
.

Note that, X ≥disp Y implies

F(F−1(x) − c) ≥ G(G−1(x) − c),

i.e.,

G−1(x∗) ≥ G−1(x) − c.

According to the DRHR property of Y , it follows that,

r̃Y (G−1(x∗)) ≤ r̃Y (G−1(x) − c),

for G−1(x) > c ≥ 0. Thus, for G−1(x) > c ≥ 0,

r̃X (F−1(x))

r̃Y (G−1(x))
≥

r̃X (F−1(x) − c)

r̃Y (G−1(x) − c)
,

which implies

G(G−1(x) − c)

F(F−1(x) − c)

is increasing in x ∈ A =
{
s ∈ (0, 1] : G−1(s) > c ≥ 0

}
. �

Proof of Lemma 2. (a) According to Theorem 5.8 of Barlow and Proschan ([3], p. 108), X i :n
has increasing hazard rate for 1 ≤ i ≤ n. Hence, for arbitrary positive integer m,

X i :n ≤c X1:m,

since X1:m is exponential.
(b) The distribution functions of Xn:n and Xn+1:n+1 are

G(x) = P(Xn:n ≤ x) = (1 − e−x )n,

and

F(x) = P(Xn+1:n+1 ≤ x) = (1 − e−x )n+1,
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respectively. Thus,

G−1(F(x)) = − log
[
1 − (1 − e−x )1+1/n

]
.

Since (1 − e−x )1+1/n can be regarded as the distribution function of a random variable Z , it is
enough to prove that Z has increasing hazard rate. It is easy to see that the density function of Z
is log-concave, which implies that Z has increasing hazard rate (see Lemma 5.8 of Barlow and
Proschan [3], p. 77). Hence the result follows. �

Proof of Theorem 1. As pointed out in Avérous et al. [2], the copula of a pair of order statistics
is independent of the parent distribution in case the random samples are from continuous
distributions. Since the RHR dependence order is copula-based, we can assume without loss
of generality that F = G is a standard exponential distribution.

According to the Markov property of order statistics (see David and Nagaraja [6]), and the
non-aging property of exponential distribution, it follows that,

H2[s](t) = P(X j :n ≤ t |X i :n = s) = F j−i :n−i (t − s),

where F j−i :n−i denotes the distribution function of X j−i :n−i . Thus, it holds that, for 0 < p ≤ 1,

H−1
2[ξ2p]

(u) = F−1
j−i :n−i (u) + ξ2p.

Further, for 0 < p ≤ q ≤ 1,

H2[ξ2q ] ◦ H−1
2[ξ2p]

(u) = F j−i :n−i

(
F−1

j−i :n−i (u) − (ξ2q − ξ2p)
)

.

Similarly, for 0 < p ≤ q ≤ 1,

H1[ξ1q ] ◦ H−1
1[ξ1p]

(u) = F j ′−i ′:n′−i ′
(

F−1
j ′−i ′:n′−i ′(u) − (ξ1q − ξ1p)

)
.

By the definition of more RHR order, we need to prove, for 0 < u ≤ v ≤ 1 and 0 < p ≤ q ≤ 1,

F j−i :n−i

(
F−1

j−i :n−i (u) − (ξ2q − ξ2p)
)

× F j ′−i ′:n′−i ′
(

F−1
j ′−i ′:n′−i ′(v) − (ξ1q − ξ1p)

)
≤ F j−i :n−i

(
F−1

j−i :n−i (v) − (ξ2q − ξ2p)
)

× F j ′−i ′:n′−i ′
(

F−1
j ′−i ′:n′−i ′(u) − (ξ1q − ξ1p)

)
. (4)

According to Lemma 2.1 of Khaledi and Kochar [16],

X i ′:n′ ≤disp X i :n

for i ′ ≤ i and n′
− i ′ ≥ n − i , thus,

ξ2q − ξ2p ≥ ξ1q − ξ1p. (5)

Also, for j ′ − i ′ ≥ j − i and n′
− j ′ ≤ n − j ,

F j−i :n−i

(
F−1

j−i :n−i (u) − c
)

≤ F j ′−i ′:n′−i ′
(

F−1
j ′−i ′:n′−i ′(u) − c

)
, c ≥ 0. (6)

Combining Eqs. (5) and (6), it holds that,

F j−i :n−i

(
F−1

j−i :n−i (u) − (ξ2q − ξ2p)
)

≤ F j−i :n−i

(
F−1

j−i :n−i (u) − (ξ1q − ξ1p)
)

≤ F j ′−i ′:n′−i ′
(

F−1
j ′−i ′:n′−i ′(u) − (ξ1q − ξ1p)

)
.
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Hence, for u ∈ {x : F−1
j ′−i ′:n′−i ′(x) ≤ ξ1q − ξ1p}

⋃
{x : F−1

j−i :n−i (x) ≤ ξ2q − ξ2p}, Eq. (4) holds.
Thus, it is enough to prove that,

H2[ξ2q ] ◦ H−1
2[ξ2p]

(u)

H1[ξ1q ] ◦ H−1
1[ξ1p]

(u)
=

F j−i :n−i

(
F−1

j−i :n−i (u) − (ξ2q − ξ2p)
)

F j ′−i ′:n′−i ′
(

F−1
j ′−i ′:n′−i ′(u) − (ξ1q − ξ1p)

)
=

F j−i :n−i

(
F−1

j−i :n−i (u) − (ξ2q − ξ2p)
)

F j ′−i ′:n′−i ′
(

F−1
j ′−i ′:n′−i ′(u) − (ξ2q − ξ2p)

)
×

F j ′−i ′:n′−i ′
(

F−1
j ′−i ′:n′−i ′(u) − (ξ2q − ξ2p)

)
F j ′−i ′:n′−i ′

(
F−1

j ′−i ′:n′−i ′(u) − (ξ1q − ξ1p)
)

is increasing in u ∈ {x : F−1
j ′−i ′:n′−i ′(x) > ξ1q − ξ1p}

⋂
{x : F−1

j−i :n−i (x) > ξ2q − ξ2p}. Since the
density function of X j ′−i ′:n′−i ′ is log-concave, it follows that

F j ′−i ′:n′−i ′
(

F−1
j ′−i ′:n′−i ′(u) − (ξ2q − ξ2p)

)
F j ′−i ′:n′−i ′

(
F−1

j ′−i ′:n′−i ′(u) − (ξ1q − ξ1p)
)

is increasing in u ∈ {x : F−1
j ′−i ′:n′−i ′(x) > ξ1q − ξ1p}. Observing that, for j ′ − i ′ ≥ j − i and

n′
− j ′ ≤ n − j ,

F−1
j ′−i ′:n′−i ′(u) ≥ F−1

j−i :n−i (u), u ∈ (0, 1],

it is sufficient to prove that

F j−i :n−i

(
F−1

j−i :n−i (u) − (ξ2q − ξ2p)
)

F j ′−i ′:n′−i ′
(

F−1
j ′−i ′:n′−i ′(u) − (ξ2q − ξ2p)

)
is increasing in u ∈ {x : F−1

j−i :n−i (x) > ξ2q − ξ2p}. The required result follows from Lemmas 1
and 2. �

Proof of Lemma 3. According to Kamps [15], the distribution function of the nth k-record value
is,

P(R(n : k) ≤ x) =
kn

(n − 1)!

∫ x

0
e−kuun−1du =

1
(n − 1)!

∫ kx

0
e−uun−1du = Fn(kx),

where Fn(x) is the lower incomplete gamma distribution with parameter n. According to Van
Zwet ([29], p. 60),

Fn′(x) ≤c Fn(x)

for n′
≥ n ≥ 1. Hence,

1
k

F−1
n (Fn′(k′x))

is convex in x ≥ 0 for k′, k ≥ 1, since the convex order is independent of the scale parameter.
That is, for n′

≥ n ≥ 1, and k′, k ≥ 1,

R(n′
: k′) ≤c R(n : k). �
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Proof of Lemma 4. It has been proved in Kochar [20] that, for n′
≥ n ≥ 1,

Fn(x) ≤disp Fn′(x),

that is, for 0 < p ≤ q ≤ 1,

F−1
n (q) − F−1

n (p) ≤ F−1
n′ (q) − F−1

n′ (p).

Hence, it holds that, for k ≥ k′
≥ 1,

1
k

F−1
n (q) −

1
k

F−1
n (p) ≤

1
k′

F−1
n′ (q) −

1
k′

F−1
n′ (p),

i.e., for n′
≥ n ≥ 1 and k ≥ k′

≥ 1,

Fn(kx) ≤disp Fn′(kx),

that is,

R(n : k) ≤disp R(n′
: k′). �

Proof of Theorem 2. As in the proof of Theorem 1, we can assume that the parent distribution
of R(n : k) and R(n′

: k′) is standard exponential. According to Kamps [15], the k-record value
also has the Markov property (see also Proposition 2.1 of Hu and Zhuang [12]). It holds that for
j > i , and t ≥ s ≥ 0,

H2[s](t) = P(R( j : k) ≤ t |R(i : k) = s) = P(R( j − i : k) ≤ t − s),

The rest of the proof is similar to that of Theorem 1 and it follows using Lemmas 3 and 4. It is
omitted for the sake of brevity. �

Proof of Theorem 3. Note that, for s > 0,

H2[s](t) = P(X2 ≤ t |V2 = s)

= 1 − P(X2 > t |V2 = s)

= 1 − Ḡs
2(t).

Hence, for 0 < p ≤ 1,

H−1
2[s](p) = Ḡ−1

2 [(1 − p)1/s
],

and, for 0 < p ≤ q ≤ 1,

H2[ξ2q ] ◦ H−1
2[ξ2p]

(u) = 1 − (1 − u)ξ2q/ξ2p ,

where ξ2p = K −1
2 (p), the pth quantile of the distribution of V2.

Similarly, for 0 < p ≤ q ≤ 1

H1[ξ1q ] ◦ H−1
1[ξ1p]

(u) = 1 − (1 − u)ξ1q/ξ1p ,

where ξ1p = K −1
1 (p), the pth quantile of the distribution of V1.

V2 ≤∗ V1 implies, for 0 < p ≤ q ≤ 1,

ξ1q

ξ1p
≥

ξ2q

ξ2p
,
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therefore,

(1 − y)ξiq/ξi p−1

is TP2 in (y, i) ∈ (0, 1] × {1, 2}. For the definition of TP2, one may refer to Karlin [14]. Also
observing that 1{y≤u} is TP2 in (u, y) ∈ (0, 1] × (0, 1]. By applying basic composition formula
(see Karlin[14], p. 17),

h(u, i) = 1 − (1 − u)ξiq/ξi p =
ξiq

ξi p

∫ 1

0
1{y≤u}(1 − y)ξiq/ξi p−1dy,

is TP2 in (u, i) ∈ (0, 1] × {1, 2}. Hence,

(X1|V1) ≺RH R(X2|V2). (7)

Conversely, if Eq. (7) holds, then

(X1|V1) ≺SI (X2|V2),

which is equivalent to, for 0 < p ≤ q ≤ 1,

(1 − u)ξ2q/ξ2p ≥ (1 − u)ξ1q/ξ1p ,

i.e.,

ξ2q

ξ2p
≤

ξ1q

ξ1p
,

which implies

V2 ≤∗ V1.

The required result follows immediately. �
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