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Some new results are obtained on stochastic orderings between random vectors
of spacings from heterogeneous exponential distributions and homogeneous ones.
Let D1 , ..., Dn be the normalized spacings associated with independent exponential
random variables X1 , ..., Xn , where Xi has hazard rate *i , i=1, 2, ..., n. Let
D*1 , ..., D*n be the normalized spacings of a random sample Y1 , ..., Yn of size n from
an exponential distribution with hazard rate *� =�n

i=1 *i�n. It is shown that for any
n�2, the random vector (D1 , ..., Dn) is greater than the random vector (D*1 , ..., D*n)
in the sense of multivariate likelihood ratio ordering. It also follows from the results
proved in this paper that for any j between 2 and n, the survival function of
Xj : n&X1: n is Schur convex. � 1996 Academic Press, Inc.

1. INTRODUCTION

There is an extensive literature on order statistics and spacings from a
single underlying distribution. However, not much attention has been given
to the case when the underlying random variables are not independent or
not identically distributed. Some interesting partial ordering results on
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order statistics and spacings from independent but nonidentical random
variables have been obtained by Pledger and Proschan [10], Proschan and
Sethuraman [11], Bapat and Kochar [1], Boland, El-Neweihi, and
Proschan [2], Kochar and Kirmani [6], Boland, Hollander, Joag-Dev,
and Kochar [3], and Kochar and Korwar [7].

Let X1 , ..., Xn be independent random variables with possibly different
probability distributions. Let Xi : n denote the i th order statistic of
X1 , ..., Xn . Let Di : n=(n&i+1)(Xi : n&Xi&1: n) denote the i th normalized
spacing, i=1, ..., n, with X0: n #0. To simplify notation, we shall drop the
second suffix n in Di : n when there is no ambiguity. Pledger and Proschan
[10] considered the problem of stochastically comparing the order
statistics and the spacings of nonidentical independent exponential random
variables with those corresponding to stochastically comparable independ-
ent and identically distributed exponential random variables. Kochar and
Korwar [7] pursued this topic further in their paper and strengthened
some of the results of Pledger and Proschan [10]. In this paper some new
results on this problem are obtained.

There are many ways in which stochastic comparisons between a ran-
dom variable X and another random variable Y can be made. In the usual
stochastic ordering case, one says that a random variable X with distribu-
tion function F is stochastically smaller than a random variable Y with dis-
tribution function G (and write it, as XP

st
Y) if F(t)�G(t) for all t. That

is, XP
st

Y if the survival function of X is everywhere dominated by that of
Y. In some cases, a pair of distributions may satisfy a stronger condition
called likelihood ratio ordering. If distributions F and G possess densities
(or probability mass functions) f and g, respectively, and f (x)�g(x) is non-
increasing in x, then we say that X is smaller than Y according to
likelihood ratio ordering. This is denoted by XP

lr
Y. It is known that

XP
lr

Y implies F� (x)�G� (x) is nonincreasing in x, where F� =1&F and
G� =1&G denote the survival functions of X and Y, respectively. This latter
condition defines hazard rate ordering. In the case of absolutely continuous
distributions, this is equivalent to the hazard rate of F, rF (x)= f (x)�F� (x),
being uniformly greater than rG(x)= g(x)�G� (x), the hazard rate of G. If
this happens, we say that X is smaller than Y according to hazard rate
ordering and write it as XP

hr
Y. Note that hazard rate ordering implies

stochastic ordering. Lehmann and Rojo [8] characterize these orderings in
terms of maximal invariants with respect to the group of monotone trans-
formations.

The above notions of stochastic dominance among univariate random
variables can be extended to the multivariate case. A random vector
X=(X1 , ..., Xn) is smaller than another random vector Y=(Y1 , ..., Yn) in the
multivariate stochastic order (and written as XP

st
Y) if E[,(X)]�E[,(Y)]
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for all increasing functions , whenever the expectations exist. To define
multivariate likelihood ratio ordering, let us denote by f and g the density
functions of X and Y, respectively. Then X is smaller than Y in the multi-
variate likelihood ratio order (written as XP

lr
Y) if

f (x) g(y)�f (x 7 y) g(x 6 y) for every x and y in Rn, (1.1)

where x 7 y=(min(x1 , y1), ..., min(xn , yn)) and x 6 y=(max(x1 , y1), ...,
max(xn , yn)).

It is known that multivariate likelihood ratio ordering implies multi-
variate stochastic ordering, but the converse is not true. Also if two
random vectors are ordered according to multivariate likelihood
ratio (stochastic) ordering, then their corresponding subsets of components
are also ordered accordingly. See Chapters 1 and 4 of Shaked and
Shanthikumar [12] for more details on various kinds of stochastic orders,
their interrelationships and their properties.

The concepts of majorization of vectors and Schur convexity of functions
will also be needed. Let [x(1)�x(2)� } } } �x(n)] denote the increasing
arrangement of the components of the vector x=(x1 , x2 , ..., xn). The vector
y is said to majorize the vector x (written as xP

m
y) if � j

1=1 y(i)�� j
i=1 x(i) ,

for j=1, ..., n&1 and �n
i=1 y(i)=�n

i=1 x(i) .

Definition 1.1. A real-valued function , defined on a set A/Rn is
said to be Schur convex (Schur concave) on A if xP

m
y O ,(x)�(�) ,(y).

In this paper some new stochastic relations between spacings of inde-
pendent but nonidentically distributed exponential random variables are
established. Let D1 , ..., Dn be the normalized spacings associated with inde-
pendent exponential random variables X1 , ..., Xn , with Xi having hazard
rate *i , i=1, ..., n. Let Y1 , ..., Yn be a random sample of size n from an
exponential distribution with common hazard rate *� =�n

i=1 *i�n. Let
D*1 , ..., D*n be their associated normalized spacings. Pledger and Proschan
[10] proved that in this case

D*1 =st D1 , D*i P
st

Di , for i=2, ..., n. (1.2)

Kochar and Korwar [7] strengthened this result from stochastic order-
ing to likelihood ratio ordering. In the next section this result is further
strengthened to establish multivariate likelihood ratio ordering between the
vectors of spacings (D1 , ..., Dn) and (D*1 , ..., D*n). This result is analogous to
Theorem 1.2 of Proschan and Sethuraman [11] on multivariate stochastic
ordering between the corresponding vectors of order statistics. In our case
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the stochastic comparison is in terms of multivariate likelihood ratio order-
ing, an ordering which is stronger than the multivariate stochastic ordering.
A consequence of this result is that Xj : n&Xi : n is stochastically greater than
Yj : n&Yi : n for 1�i< j�n. In the case of the sample range, a stronger
result is proved. It is shown that its survival function is Schur convex
in (*1 , ..., *n). This and some other related results are discussed in
Section 3.

2. COMPARISONS WITH I.I.D. EXPONENTIALS

Now we prove the main theorem of this section.

Theorem 2.1. Let D1 , ..., Dn be the normalized spacings associated with
independent exponential random variables X1 , ..., Xn , where Xi has hazard
rate *i , i=1, ..., n. Let D*1 , ..., D*n be the normalized spacings of a random
sample Y1 , ..., Yn of size n from an exponential distribution with hazard rate
*� =�n

i=1 *i�n. Then for any n�2,

(D*1 , ..., D*n) P
lr

(D1 , ..., Dn). (2.1)

Proof. Let

uj= :
j

i=1

yi

n&i+1
, j=1, ..., n.

Then as seen in Theorem 3.1 of Kochar and Kirmani [6], the joint density
of (D1 , ..., Dn) is

g(y)=
>n

i=1 *i

n!
:
r

e&�n
i=1 *i uji, (2.2)

where � r denotes summation over all permutations [ j1 , ..., jn] of n
integers [1, ..., n].

Since D*1 , ..., D*n are i.i.d. exponentials each with hazard rate *� , the joint
density of D*1 , ..., D*n is

f (x)=*� ne&*� (x1+ } } } +xn)

=*� ne&x� (*1+ } } } +*n).

Therefore,

f (x) g(y)=
>n

i=1 *i

n!
*� n :

r

e&�n
i=1 *i(uji+x� )
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and

f (x 7y) g(x6 y)=
>n

i=1 *i

n!
*� n :

r

e&�n
i=1 *i (vji+x7 y) ,

where ( j1 , ..., jn) is a permutation of n integers [1, ..., n] and

vj= :
j

i=1

xi 6 yi

n&i+1
.

It is enough to prove that under the given conditions,

f (x) g(y)�f (x 7 y) g(x 6 y) for every x and y in Rn. (2.3)

Since the exponential density is log-convex, it follows from Marshall and
Olkin [9, p. 85] that the function

h(z)=:
r

e&�n
i=1 *i zji

is Schur-convex in z=(z1, ..., zn). The required result will follow from this
if we can show that

(u1+x� , ..., un+x� )P
m

(v1+x 7 y, ..., vn+x 7y). (2.4)

Clearly the components of the two vectors in (2.4) are nondecreasing and
the sum of the elements of each vector is n(x� + y� ).

We have to prove that

:
j

l=1

(vl+x 7 y)� :
j

l=1

(ul+x� ) for j=1, ..., n. (2.5)

The right-hand side of (2.5) is

:
j

l=1

(ul+x� )= :
j

l=1
{ :

l

i=1

yi

n&i+1
+x� =

=
j
n

y1+
j&1
n&1

y2+ } } } +
1

n& j+1
yj+ jx�

=
j
n

y1+
j&1
n&1

y2+ } } } +
1

n& j+1
yj+

j
n

(x1+ } } } +xn)
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:
j

l=1

(ul+x� )=
j
n

( y1+x1)+
j&1
n&1

( y2+x2)+ } } } +
1

n& j+1
( yj+xj)

+\ j
n

&
j&1
n&1+ x2+\ j

n
&

j&2
n&2+ x3+ } } }

+\ j
n

&
1

n& j+1+ xj . (2.6)

A similar argument applied to the left-hand side of (2.5) yields the follow-
ing result:

:
j

l=1

(vl+x7 y)=
j
n

( y1+x1)+
j&1
n&1

( y2+x2)+ } } } +
1

n& j+1
( yj+xj)

+\ j
n

&
j&1
n&1+ (x2 7 y2)+\ j

n
&

j&2
n&2+ (x3 7y3)+ } } }

+\ j
n

&
1

n& j+1+ (xj 7 yj). (2.7)

The required result (2.5) then follows by comparing (2.6) and (2.7) and
noting that j�n&( j&k)�(n&k)>0 for j<n. The relationship (2.3) then
follows immediately. K

Theorem 3.5 of Kochar and Korwar [7] which establishes likelihood
ratio ordering between Di and Di* immediately follows from this since if
two random vectors are ordered according to multivariate likelihood ratio
ordering, then so are their marginals. As is well known, multivariate
likelihood ratio ordering implies multivariate stochastic ordering, and the
latter is invariant under monotone transformations. This is the context of
the following corollary.

Corollary 2.1. Let D1 , ..., Dn be the normalized spacings associated
with independent exponential random variables X1 , ..., Xn , where Xi has
hazard rate *i , i=1, ..., n. Let D*1 , ..., D*n be the normalized spacings of a ran-
dom sample Y1 , ..., Yn of size n from an exponential distribution with hazard
rate *� . Then

(a) for any n�2

(D*1 , ..., D*n)P
st

(D1 , ..., Dn), (2.8)

(b) for 1�i< j�n,

(Yj : n&Yi : n)P
st

(Xj : n&Xi : n). (2.9)
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Proof. (a) Since multivariate likelihood ratio ordering implies multi-
variate stochastic ordering, the result follows.

(b) It follows from the property of multivariate stochastic ordering
that if XP

st
Y then E[,(X)]�E[,(Y)] for all increasing functions ,

whenever the expectations exist. The proof follows after observing
that Xj : n&Xi : n=� j

r=i+1 Dr�(n&r+1) is a nondecreasing function of
(D1 , ..., Dn). K

In particular, the above result gives a lower bound on the survival func-
tion of the sample range of heterogeneous exponential random variables in
terms of that of the sample range of a random sample of the same size form
an exponential distribution with common hazard rate *� . The distribution of
the sample range of a random sample from a distribution F is well known.
(See, e.g., Eq. (2.3.3), page 12 of David [4]). Taking F to be the exponen-
tial distribution, it is then easy to see that the distribution of the sample
range is the same as that of the largest order statistic in a sample of size
(n&1) from the exponential distribution with hazard rate *� . Using these
results we get the following corollary.

Corollary 2.2. Let X1 , ..., Xn be independent exponential random
variables with Xi having hazard rate *i , for i=1, ..., n. Then for x>0,

P[Xn : n&X1: n�x]�[1&exp(&*� x)]n&1. (2.10)

3. SOME SCHUR TYPE RESULTS

The sample range and the generalized spacings of the type Xj : n&X1: n

are of special interest in statistics. Kochar and Korwar [7] have proved in
their Theorem 3.2 that for any n>1, the survival function of X2: n&X1 : n is
Schur convex in *. The next result generalizes this result and strengthens
Corollary 2.2 above. It is shown that the vector (X2: n&X1: n , ...,
Xn : n&X1 : n) is stochastically larger when the *i 's are more dispersed in the
sense of majorization.

Theorem 3.1. Let X1 , ..., Xn be independent exponential random
variables with Xi having hazard rate *i , for i=1, ..., n. Let Y1 , ..., Yn be
another set of independent exponential random variables with **i as the hazard
rate of Yi , i=1, ..., n. Let *=(*1 , ..., *n) and **=(**i , ..., **n), then *p

m
**

implies

(X2: n&X1: n , ..., Xn : n&X1 : n)p
st

(Y2: n&Y1: n , ..., Yn : n&Y1 : n). (3.1)
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Proof. Proschan and Sethuraman [11] have shown that under the con-
ditions of this theorem,

(X1: n , ..., Xn : n)p
st

(Y1: n , ..., Yn : n) (3.2)

and X1: n=st Y1 : n .
It follows from Kamae, Krengel, and O'Brien [5] (also see

Theorem 4.B.1 of Shaked and Shanthikumar [12]) that there exist random
variables Z� and (X� i : n , Y� i : n), i=2, ..., n on the same probability space such
that

X1: n=st Y1 : n=st Z� ,

X� i : n=st Xi : n , Y� i : n=st Yi : n , i=2, ..., n;

and with probability one,

X� i : n�Y� i : n , i=2, ..., n.

Hence with probability one,

(X� 2: n&Z� , ..., X� n : n&Z� )�(Y� 2 : n&Z� , ..., Yn : n&Z� ). (3.3)

The required proof follows from this. K

An important consequence of this result is that the sample range
Xn : n&X1 : n is stochastically larger when the *i 's are more dispersed, a
result more general than the one given by Corollary 2.2.

Boland, Hollander, Joag-Dev, and Kochar [3] have studied different
kinds of dependence relations between order statistics from independent,
but otherwise arbitrary, distributions. In particular, it follows from their
Theorem 2.2 that in the case of independent exponential random variables,
for any i>1, Xi : n is stochastically increasing in X1: n in the sense that
P[Xi : n>y | X1: n=x] is nondecreasing in x for y�x. It will be interesting
to study the properties of this conditional probability as a function of the
*i 's. An important consequence of the next corollary is that this conditional
probability is Schur convex in *.

Corollary 3.1. Let X1 , ..., Xn be independent exponential random
variables with Xi having hazard rate *i , for i=1, ..., n. Then for
0�x1� } } } �xn ,

P[X2: n>x2 , ..., Xn : n>xn | X1: n=x1]

is Schur convex in (*1 , ..., *n).
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Proof.

P[X2: n>x2 , ..., Xn : n>xn | X1: n=x1]

=P[X2: n&X1: n>x2&x1 , ..., Xn : n&X1 : n>xn&x1 | X1: n=x1]

=P[X2: n&X1: n>x2&x1 , ..., Xn : n&X1 : n>xn&x1]. (3.4)

The last equality follows from Theorem 4.1 of Kochar and Korwar [7].
The fact that (3.4) is Schur convex in (*1 , ..., *n) follows from
Theorem 3.1. K

One may wonder whether one can extend Theorem 3.1 to other spacings.
Pledger and Proschan [10] have shown with the help of an example that
for n=3, the survival function of the last spacing D3: 3 is not Schur convex.
However, we have the following positive and even stronger result for n=2.

Theorem 3.2. Let X1 and X2 be two independent exponential random
variables with hazard rates *1 and *2 , respectively. Let Y1 and Y2 be another
set of independent exponential random variables with respective hazard rates
**1 and **2 . Then for (*1 , *2)p

m
(**1 , **2),

X2: 2&X1 : 2 p
lr

Y2 : 2&Y1, 2 . (3.5)

Proof. Let *1+*2=**1+**2=s. Assume without loss of generality that
*1�*2 , **1�**2 . Then for *1<**1 (and consequently for *2>**2),
(*1 , *2)p

m
(**1 , **2). Now the p.d.f. of X2 : 2&X1: 2 is (*1*2 �s)[e&*1x+e&*2x]

(see, Theorem 2.1 of Kochar and Korwar [7]).
We have to prove that under the above constraints on the parameters,

the ratio of the densities

g(x)=
e&*1x+e&*2x

e&*1*x+e&*2*x

is nondecreasing in x for x>0.
The numerator of g$(x) is

&[e&*1*x+e&*2*x][*1e&*1x+*2e&*2x]+[e&*1x+e&*2x]

_[**1 e&*1*x+**2e&*2*x]

=(**1&*1) e&(*1+*1*) x+(**2&*2) e&(*2+*2*) x+(**2&*1) e&(*1+*2*) x

+(**1&*2) e&(*1*+*2) x

=(**1&*1)[e&(*1+*1*) x&e&(*2+*2*) x]+(**2&*1)

_[e&(*1+*2*) x&e&(*1*+*2) x]. (3.6)

Here we have used the fact that **2&*2=&(**1&*1) and **1&*2=*1&**2 .
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As *1+**1�*2+**2 , for each x�0, e&(*1+*1*) x&e&(*2+*2*) x�0. Also
**1>*1 . Therefore the first term in (3.6) is nonnegative.

Now consider the second term in (3.6). Since *1<**1 and **2<*2 ,
*1+**2<**1+*2 . Therefore, for each x�0, e&(*1+*2*) x&e&(*1*+*2) x�0.
Also **2�**1>*1 O **2&*1�0. Therefore, the second term of (3.6) is also
nonnegative. Hence g(x) is nondecreasing in x for x�0. This proves the
required result. K

This result strengthens Theorem 3.3 of Kochar and Korwar [7] from
hazard rate ordering to likelihood ratio ordering.
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