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We obtain some new results on normalized spacings of independent exponential
random variables with possibly different scale parameters. It is shown that the
density functions of the individual normalized spacings in this case are mixtures of
exponential distributions and, as a result, they are log-convex (and, hence, DFR).
G. Pledger and F. Proschan (Optimizing Methods in Statistics (J. S. Rustagi, Ed.),
pp. 89�113, Academic Press, New York, 1971), have shown, with the help of a
counterexample, that in a sample of size 3 the survival function of the last spacing
is not Schur convex. We show that, however, this is true for the second spacing for
all sample sizes. G. Pledger and F. Proschan (ibid.) also prove that the spacings are
stochastically larger when the scale parameters are unequal than when they are all
equal. We strengthen this result from stochastic ordering to likelihood ratio
ordering. Some new results on dispersive ordering between the normalized spacings
have also been obtained. � 1996 Academic Press, Inc.

1. Introduction

In reliability theory and life testing, exponential distributions play an
important role. They have the property that they never get aged with time
and have constant failure rates. There has been a lot of work done in the
literature on the stochastic properties of various statistics based on random
samples from exponential distributions. However, not much attention has
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been given to the case when the underlying random variables are not
independent or not identically distributed. Some interesting results on order
statistics from independent random variables with proportional hazard
rates have been obtained by Sen [17], Pledger and Proschan [15],
Proschan and Sethuraman [16], Bapat and Kochar [4], and Boland,
Hollander, Joag-Dev and Kochar [8]. Obviously, the proportional hazard
family contains exponential distributions as a special case. Also see, Bapat
and Beg [3] for the distribution theory of order statistics from independent,
but nonidentically, distributed random variables.

Let X1 , ..., Xn be independent random variables with possibly different
probability distributions. We shall denote by Xi :n the i th-order statistic of
X1 , ..., Xn . Let Di :n=(n&i+1)(Xi :n&Xi&1:n) denote the i th normalized
spacing, i=1, ..., n, with X0:n #0. To simplify notation, we shall drop the
second suffix n in Di :n when there is no ambiguity. It is important to study
the stochastic properties of spacings under different models. It is well
known that if X1 , ..., Xn is a random sample from an exponential
distribution, then D1 , ..., Dn are independent and identically distributed as
exponential random variables. But if the random sample comes from a
decreasing failure rate (DFR) distribution, then the successive normalized
spacings are stochastically increasing (cf. Barlow and Proschan [5]).
Kochar and Kirmani [12] have strengthened this result from stochastic
ordering to hazard rate ordering.

If F� (G� ) denotes the survival function of a random variable X(Y), we say
that X is greater than Y according to hazard rate ordering (written as
Xphr Y) if F� (x)�G� (x) is nondecreasing in x. In the case of absolutely
continuous distributions, this is equivalent to the hazard (or failure) rate of
F being uniformly smaller than that of G. If f (g) is the density function of
F(G) and f (x)�g(x) is nondecreasing in x, then we say that X is greater
than Y according to likelihood ratio ordering and write as Xplr Y.
Likelihood ratio ordering implies hazard rate ordering which in turn
implies stochastic ordering. See Shaked, Shanthikumar, and collaborators
[18] for detailed discussions on various types of stochastic orders, their
interpretations, and their properties.

In this paper we study the stochastic properties of spacings from
independent exponential distributions with possibly unequal scale
parameters. In Section 2, we obtain the joint, as well as the marginal,
distributions of the Di 's. It is shown that the one-dimensional marginals
are mixtures of exponential distributions and have DFR distributions.
Pledger and Proschan [15] proved that if the scale parameters of the
exponential distributions are not all equal then Di is stochastically smaller
than Di+1 , i=1, ..., n&1. In Section 3, we explore whether this result can
be strengthened. Pledger and Proschan [15] also raised the question
whether the survival function of Di is Schur convex in (*1 , ..., *n). They
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show with the help of a counterexample that for n=3, the survival function
of the last normalized spacing D3:3 is not Schur convex. What can we say
about the other spacings and for arbitrary n? These and related problems
are studied in Section 3. In particular, we prove in that section that the
survival function of D2:n is Schur convex in (*1 , ..., *n) for any n and
D1:n Plr Di :n for i=2, ..., n. Pledger and Proschan [15] also proved that
the spacings are stochastically larger when the scale parameters are
unequal than when they are all equal. We strengthen this result from
stochastic ordering to likelihood ratio ordering. We also establish some
dispersive ordering results between spacings in that section. In the last
section we show that the vector (X2:n , ..., Xn :n) is increasing in X1 :n

according to the upper orthant order.

2. The Distributions of Normalized Spacings

In this section we obtain the joint, as well as the marginal, distributions
of the normalized spacings from exponential distributions with possibly
unequal scale parameters and we study some of their aging properties.

Theorem 2.1. Let X1 , ..., Xn be independent random variables with Xi

having the exponential distribution with survival function F� i (t)=exp(&*it),
t�0, for i=1, ..., n. Then

(a) D1 has exponential distribution with scale parameter �n
i=1 *i �n and

D1 is independent of (D2 , ..., Dn);

(b) the joint p.d. f. of (Di1 , ..., Dik), 2�ij�n, j=1, ..., k, 1�k�n&1
is

\`
n

i=1

*i+ :
r

1
>n

i=1 (�n
j=i *(rj))

`
k

l=1

�n
j=il *(rj)

n&il+1
e&(dil �(n&il+1)) �n

j= il
*(rj) , (2.1)

for dil�0, l=1, ..., k; where r is a permutation of (1, 2, ..., n) and *(i)=*i ;

(c) for i # [2, ..., n], the distribution of Di is a mixture of independent
exponential random variables with p.d. f.:

:
S

P(S)
(s&4(S))
n&i+1

exp[&(s&4(S)) di�(n&i+1)], di�0, (2.2)
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where the �S is over all subsets S/[1, ..., n] of size (i&1), s=�n
i=1 *i ,

4(S)=�j # S *j , and

P(S)=:
r \`

i # S

*i +_`
i&1

l=1
{ :

i&1

j=l

*(r(kj))+s&4(S)=&
&1

, (2.3)

the �r is being taken over all permutations r=(rk1
, ..., rki&1

) of the elements
kj # S; j=1, ..., i&1.

Proof. As in Kochar and Kirmani [12], the joint density of the order
statistics X1:n , ..., Xn :n is

:
r \`

n

i=1

*i + exp {& :
n

i=1

*(ri) xi = for 0�x1� } } } �xn<�,

where r=(r1 , ..., rn) is a permutation of (1, ..., n).
The linear transformations,

Di=(n&i+1)(Xi :n&Xi&1:n), i=1, ..., n, X0 :n #0,

yield the joint p.d.f. of (D1 , ..., Dn) as

>n
i=1 *i

n!
:
r

`
n

i=1

e&�n
j=i *(rj) di �(n&i+1)

=
>n

i=1 *i

n!
:
r

e&(s�n) d1 `
n

i=2

e&(di �(n&i+1)) �n
j=i *(rj)

={s
n

e&(s�n) d1={>n
i=1 *i

s(n&1)!
:
r

`
n

i=2

e&(di �(n&i+1)) �n
j= i *(rj)=, (2.4)

where r is a permutation of (1, 2, ..., n) and *(i)=*i . This shows that

(i) D1 is independent of (D2 , ..., Dn) and it has exponential distribution
with parameter s�n.

(ii) the p.d.f.'s of each of (D1 , ..., Dn) and (D2 , ..., Dn) is a mixture of
products of exponential densities.

The joint p.d.f. of (Di1
, ..., Dik), 2�ij�n, j=1, ..., k, 1�k�n&1, can be

obtained by integrating out di , i # [i1 , ..., ik] from

>n
i=1 *i

s(n&1)!
:
r

`
n

i=2

e&(di �(n&i+1)) �n
j= i *(rj)

and is

\`
n

i=1

*i+ :
r

1
>n

i=1 (�n
j=i *(rj))

`
k

l=1

� n
j=il *(rj)

n&i l+1
e&(dil �(n&il+1)) �n

j=il
*(rj) (2.5)
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which is again a mixture of products of exponential densities. In particular,
the p.d.f. of Di alone is

:
r

(>n
i=1 *i)

>n
i=1 (�n

j=i *(rj))

(�n
j=i *(rj)) e&(di �(n&i+1)) �n

j=i *(rj)

n&i+1
(2.6)

which can be written as

:
S

P(S)
(s&4(S))
n&i+1

exp[&(s&4(S)) di�(n&i+1)], (2.7)

where the �S is over all subsets S/[1, ..., n] of size (i&1), s=�n
i=1 *i ,

4(S)=�j # S *j , and

P(S)=:
r \`

i # S

*i +_`
i&1

l=1
{ :

i&1

j=l

*(r(kj))+s&4(S)=&
&1

; (2.8)

the �r is being taken over all permutations r=(rk1
, ..., rki&1

) of the elements
kj # S; j=1, ..., i&1. In going from (2.6) to (2.7) (with (2.8)) we used the
fact that

:
r \ `

i # S$

*i +_ `
n&i+1

l=1
\ :

n&i+1

j=l

*(r(ij))+&
&1

=1, (2.9)

where �r is taken over all permutations (r(k1), ..., r(kn&i+1)) of the
elements kj # S$=[1, ..., n]&S, j=1, ..., n&i+1. The left-hand side of
(2.9) is the sum of probabilities of the mixing distribution used in the p.d.f.
of D� n&i+1 , the last normalized spacing for the set of the exponential ran-
dom variables [Xkj , kj # S$, j=1, ..., n&i+1]. K

Part (a) of the above theorem has also been proved in Gross, Hunt, and
Odeh [9] using the complicated theory of permanents. Our proof is much
simpler and straightforward. There also is a connection of this to successive
sampling from a finite population as follows. The probability P(S) in (2.3)
is the probability of obtaining S in successive sampling of size (i&1) from
the finite population [1, ..., n], where successive draws are made with
replacement and at each draw a unit k is chosen with probability
pk=*k �(*1+ } } } +*n), sampling being continued until (i&1) distinct units
are chosen and any multiplicities are discarded. The terms on the left-hand
side of (2.9), then, are merely the probabilities of ordered samples
r=(r(k1), ..., r(kn&i+1)) in a successive sample of size (n&i+1) from the
finite population S$. The probabilities P(S) in (2.3) have the integral
representation (see Andreatta and Kaufman [1])

P(S)=(s&4(S)) |
�

0 {`
i # S

(1&e&*i x)= exp[&(s&4(S)) x] dx. (2.10)
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Note also that

P(S)=P(max
i # S

Xi<min
i # S$

Xi). (2.11)

For more information on successive sampling see, for example, Ha� jek [10].
Barlow and Proschan [5] have shown that if X1 , ..., Xn is a random

sample from a DFR distribution, then the spacings also have DFR
distributions. It is shown in the next theorem that a similar result holds in
the case of independent exponential distributions with unequal scale
parameters.

Theorem 2.2. Let D1 , ..., Dn be the normalized spacings based on n
independent exponential distributions. Then Di has a log-convex density for
i=1, ..., n.

Proof. The result follows from the fact that mixtures of log-convex
densities are log-convex (cf. Marshall and Olkin [13, p. 452]) and from
part (c) of Theorem 2.1. K

Since probability distributions with log-convex densities have decreasing
failure rates we have the following result.

Corollary 2.1. Let D1 , ..., Dn be the normalized spacings based on n
independent exponential distributions. Then Di has a DFR distribution for
i=1, ..., n.

3. Stochastic Relations between Normalized Spacings

First, we give the definitions of majorization of vectors and Schur
convexity of functions on Rn. Let [x(1)�x(2)� } } } �x(n)] denote the
increasing arrangement of the components of the vector x=(x1 , x2 , ..., xn).
The vector y is said to majorize the vector x (written as xPm y) if
� j

i=1 y(i)�� j
i=1 x(i) , j=1, ..., n&1, and �n

i=1 y (i)=�n
i=1 x(i) .

Definition 3.1. A real-valued function , defined on a set A/Rn said
to be Schur convex (Schur concave) on A if xPm y O ,(x)� (�) ,(y).

Pledger and Proschan [15] proved the following result.

Theorem 3.1. Let X1 , ..., Xn be independent exponential random
variables with possibly unequal scale parameters. Then

Di Pst Di+1 , i=1, ..., n&1, (3.1)

where Pst denotes stochastic dominance.
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Let F� i (t)=exp(&*it) and F� i*(t)=exp(&*� t), for 1=1, ..., n, where *� =
(1�n) �n

i=1 *i . Let (D1* , ..., Dn*) be the normalized spacings associated with
(F� 1* , ..., F� n*). As discussed earlier, D1* , ..., Dn* are independent and
identically distributed each having an exponential distribution with the
common scale parameter *� . It follows from Theorem 2.1(a) and (3.1) that

D1*=st D1 , Di* Pst Di for i=2, ..., n. (3.2)

Note that the mean *� of (*1 , ..., *n) is used for the comparison. This means
that the spacings are comparatively stochastically larger when the scale
parameters are unequal than when they are all equal. Pledger and
Proschan [15] raised the question whether such a comparison is possible
using a vector **, where *pm **. That is, whether the survival function of
Di is Schur convex in (*1 , ..., *n). They show with the help of an example
that for n=3, the survival function of D3:3 is not Schur convex. Does
*pm ** imply a weaker ordering between D3:3 and D*3:3 , namely,
E[D3:3]�E[D*3:3]? The next example shows that even this does not hold.

Example 3.1. Let *=(0.01, 0.1, 0.4) and **=(0.01, 0.25, 0.25), we find
that E[D3:3]=495.84<498.80=E[D*3:3] even though *pm **.

However, the survival function of D2:n is Schur convex in (*1 , ..., *n) for
any n as proved in the next theorem.

Theorem 3.2. For any n, the survival function of D2:n is Schur convex in
(*1 , ..., *n).

Proof. The survival function of D2 :n at x is

(1�s) :
n

i=1

*i exp {&
x

n&1
(s&*i)=

=
1
s

exp(&xs�(n&1)) :
n

i=1

*i exp { x*i

n&1= . (3.3)

Since each term *i exp[*ix�(n&1)] in the above sum is convex in *i , it
follows that the survival function of D2:n is Schur convex in (*1 , ..., *n) for
each x (see Marshall and Olkin [13, p. 64]). K

It is interesting to see whether Theorem 3.2 can be strengthened from
stochastic ordering to hazard rate ordering. The next example shows that
even for n=3, the hazard rate of D2 :n is not Schur concave.

Example 3.2. Let *=(40, 10, 1) and **=(40, 5.5, 5.5). The hazard
rate of D2:3 at x=0.2 is 11.388, whereas that of D*2:3 at the same value of
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x is 11.298, even though *pm **. This proves that the hazard rate of D2:3

is not Schur concave.

However, for n=2, the hazard rate of D2:2 is Schur concave in (*1 , *2).

Theorem 3.3. The hazard rate of D2:2 is Schur concave in (*1 , *2).

Proof. From (2.2), the hazard rate r(x) of D2 :2 is

r(x)=
*2*1 e&*1x+*1*2e&*2x

*2 e&*1 x+*1e&*2x

=
*1 *2(e*1x+e*2x)
*1e*1x+*2e*2x

=*2+
*2(*1&*2) e*2x

*1e*1x+*2 e*2 x . (3.4)

On differentiating r(x), we get

dr (x)
d*1

=
*2 e*2x

*1e*1x+*2 e*2x&
*2e*2x

(*1e*1x+*2e*2x)2 (e*1x+*1xe*1x)

=
*2e*2x

(*1e*1x+*2e*2x)2 [*2(e*1x+e*2 x)&*1(*1&*2) xe*1x]

and by using a result similar to (3.4), obtained by interchanging *1 and *2 ,
we get

dr (x)
d*2

=
*1 e*1x

(*1e*1x+*2 e*2x)2 [*1(e*1x+e*2 x)&*2(*2&*1) xe*2x].

Hence,

\dr (x)
d*1

&
dr (x)

d*2 + (*1&*2)

=
(*1&*2)

(*1 e*1x+*2e*2x)2 [(e*1x+e*2x)(*2
2 e*2x&*2

1e*1x)

+2*1*2(*2&*1) e(*1+*2) x]

�0.

Hence r(x), the hazard rate of D2 :2 is Schur concave in (*1 , *2) by
Theorem A.4, page 57, of Marshall and Olkin [13]. K
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This result is related to a result of Boland, El-Neweihi, and Proschan
[7] which says that the hazard rate of a parallel system of two independent
exponential random variables with parameters *1 and *2 is Schur concave
in (*1 , *2). The life of the parallel system can be expressed as 1

2 D1:2+D2:2 .
Now the distribution of D1:2 which is exponential with parameter
(*1+*2)�2, is IFR. Since D1:2 is independent of D2:2 , the above result of
Boland, El-Neweihi, and Proschan [7] also follows from Theorem 3.3 and
Lemma 1B.5, page 16, of Shaked, Shanthikumar, and collaborators [18].

In the case of dependent random variables, studying the stochastic
ordering between the marginal distributions may not be very useful in
revealing monotone tendencies between dependent variables because the
dependence information is being ignored. Realizing this, Shanthikumar and
Yao [19] introduced some new stochastic orders for comparing the
components of a random vector. We focus our discussion on the extension
of the idea of likelihood ratio ordering. For two independent random
variables X1 and X2 , it is known that X1 Plr X2 if and only if

E[,(X1 , X2)]�E[,(X2 , X1)] \, # Glr , (3.5)

where

Glr : [,: ,(x2 , x1)�,(x1 , x2) \x1�x2]. (3.6)

Motivated by the above characterization of likelihood ratio ordering,
Shanthikumar and Yao [19] extended this concept to the bivariate case as
follows.

Definition 3.2. For a bivariate random variable (X1 , X2), X1 is said to
be smaller than X2 according to joint likelihood ratio ordering
(X1 Plr : j X2) if and only if (3.5) holds.

It can be seen that

X1 Plr : j X2 � f # Glr ,

where f ( } , } ) denotes the joint density of (X1 , X2).
A bivariate function , # Glr is called arrangement increasing (AI). In their

seminal work on order relations between the components of a bivariate
random vector, Yanagimoto and Sibuya [20] also considered this ordering,
although they did not relate it to the notion of likelihood ratio ordering.

As pointed out by Shanthikumar and Yao [19] joint likelihood
ratio ordering between two dependent random variables may not
imply likelihood ratio ordering between their marginal distributions, but
it does imply stochastic ordering between them (that is, X1 Plr : j X2 O
X1 Pst X2). Obviously, in case of independent random variables,
X1 Plr : j X2 � X1 Plr X2 .
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Shanthikumar and Yao [19] also extend the concept of joint likelihood
ratio ordering to compare the components of an n-dimensional random
vector. Let x=(x1 , ..., xn) and y=( y1 , ..., yn) be two vectors. We say that
x is better arranged than y(xpa y) if x can be obtained from y through suc-
cessive pairwise interchanges of its components, with each interchange
resulting in an increasing order of the two interchanged components, e.g.,
(4, 1, 5, 3)pa (4, 3, 5, 1)pa (4, 5, 3, 1). A function g: Rn � R that preserves
the ordering pa is called an arrangement increasing function denoted by
g # AI if xpa y O g(x)�g(y) (cf. [13, p. 160] for the definition of an
arrangement increasing function on Rn).

Definition 3.3. Let f (x1 , ..., xn) denote the joint density of X. Then

X1 Plr : j X2 Plr : j } } } Plr : j Xn � f (x1 , ..., xn) # AI. (3.7)

Hollander, Proschan, and Sethuraman [11] call such a function a
decreasing in transposition (DT) function. They also discuss many proper-
ties of such functions and give an extensive list of multivariate densities
which are DT (or arrangement increasing).

Kochar and Kirmani [12] proved the following result on spacings from
independent random variables with log-convex densities.

Theorem 3.4. Let X1 , X2 , ..., Xn be independent random variables with
log-convex densities. Then

D1:n Plr : j } } } �lr: j Dn :n . (3.8)

Theorem 3.1, originally proved by Pledger and Proschan [15], trivially
follows from this since joint likelihood ratio ordering implies stochastic
ordering between the marginal distributions. However, as discussed above,
in general, (3.8) may not imply likelihood ratio ordering between the
successive normalized spacings. Because of the independence between D1

and (D2 , ..., Dn) in the exponential case, we have the following result on
likelihood ratio ordering between D1:n and Di :n for 1<i�n.

Theorem 3.5. Let F� i (x)=exp(&*ix) and F� i*(x)=exp(&*� x), for
i=1, ..., n, where *� =s�n. Let (D1* , ..., Dn*) be the normalized spacings
associated with (F� 1* , ..., F� n*). Then for i=1, ..., n,

Di*Plr Di . (3.9)

Or, equivalently,

D1 Plr Di for i=2, ..., n. (3.10)
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Proof. As seen in Theorem 2.1, D1*=st D1 and D1 is independent of
(D2 , ..., Dn). The required result follows from Theorem 3.4 and the fact that
for independent random variables joint likelihood ratio ordering is the
same as ordinary likelihood ratio ordering. K

This result strengthens Theorem 3.1 of Pledger and Proschan [15] from
stochastic ordering to likelihood ratio ordering.

Another natural question to ask is whether (3.1) can be strengthened to
establish hazard rate or likelihood ratio ordering between consecutive
normalized spacings. Theorem 3.5 establishes likelihood ratio ordering only
between the first normalized spacing and the others. We make the following
conjecture.

Conjecture. Let X1 , ..., Xn be independent exponential random
variables. Then

Di P
hr Di+1 , i=1, ..., n&1. (3.11)

We give below the proof of this conjecture for n=3. First we prove the
following lemmas.

Lemma 3.1. Let P(S) be as defined in Theorem 2.1. Suppose that S1 and
S2 are two subsets of [1, ..., n] of size i (1�i�n&1) and that they have all
but one element in common. Denote the uncommon element in S1 by a1 and
that in S2 by a2 . Then

*(a2) P(S1)�*(a1) P(S2) if *(a1)�*(a2).

Proof. Let c1 , ..., ci&1 be the common elements and s$=s&
�i&1

j=1 *(cj)&*(a1)&*(a2). Let r be a permutation of the elements of the set
(c1 , ..., ci&1 , a1) and let k (1�k�i) be the position of a1 in r. Replace a1

in r by a2 and denote this permutation of the elements of S2 by r$. Then

*(a2) P(S1)=:
r {*(a1) *(a2) `

i&1

j=1

*(cj)={ `
i

l=k+1
\s$+ :

i

j=l

*(rj)+*(a2)+=
&1

_{`
k

l=1
\s$+ :

i

j=l

*(rj)+*(a2)+=
&1

�:
r$
{*(a1) *(a2) `

i&1

j=1

*(cj)={ `
i

l=k+1
\s$+ :

i

j=l

*(rj)+*(a1)+=
&1

_{`
k

l=1
\s$+ :

i

j=l

*(rj)+*(a1)+=
&1

=*(a1) P(S2). K
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Lemma 3.2 (C8 ebys� ev's inequality, Theorem 1, page 36 of Mitrinovic�
[14]). Let a1�a2� } } } �an and b1�b2� } } } �bn be two increasing
sequences of real numbers. Then

n :
n

i=1

aibi�\ :
n

i=1

ai+\ :
n

i=1

bi+ .

With the help of the above lemmas, we prove the next theorem.

Theorem 3.6. D2 :3 Phr D3:3 .

Proof. By Theorem 2.1(ii), the ratio of the survival function of D3:3 at
x to that of D2 :3 at x is

�3
i=1 P(Si) exp[&x(s&4(Si))]

�3
i=1 (*i �s) exp[&(x�2)(s&*i)]

=g(x), say,

where the *i 's are ordered from the smallest to the largest and where
Si=[*1 , *2 , *3]&[*i], i=1, 2, 3. Now g(x) is increasing in x if its
derivative g$(x)�0 for all x�0, and g$(x)�0 if

numerator of
g$(x)

s

= :
3

i $=1

*i $ exp {&
x
2

(s&*i $)=
__ :

3

i=1

exp[&x(s&4(Si))] P(Si)[
s&*i $

2
&(s&4(Si))=& (3.12)

is �0, as the denominator of g$(x) is positive. Now by the definition of Si

and the ordering of the *i 's, it follows from Lemma 3.1, or otherwise that
the P(Si)'s are decreasing in i. Hence,

ai=P(Si) exp[&x(s&4(Si)], i=1, 2, 3,

are decreasing in i. We next consider the values of (s&*i $)�2&(s&4(Si))
for each i $. They are respectively given by the rows of

(*2+*3&2*1)�2 (*3&*2)�2 (*2&*3)�2

\ (*3&*1)�2 (*3+*1&2*2)�2 (*1&*3)�2 + .

(*2&*1)�2 (*1&*2)�2 (*1+*2&2*3)�2
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The terms within the square brackets in (3.12) are respectively the inner
products of the rows of the above matrix with (a1 , a2 , a3). Since the ai 's are
decreasing, the three inner products are respectively greater than or equal to

[(*2+*3&2*1)�2] a1 , [(*3+*1&2*2)�2] a2 , [(*1+*2&2*3)�2] a3 .

Notice that b1=(*2+*3&2*1)�2, b2=(*3+*1&2*2)�2, b3=(*1+*2&
2*3)�2 are decreasing in i. So are the ci 's, where

ci=ai *i exp {&
x
2

(s&*i)==*iP(Si) exp {&
x
2

(s+*i)=
(again by Lemma 3.1). Finally, by Lemma 3.2 and (3.12),

numerator of
g$(x)

s
� :

3

i=1

bi ci�\ :
3

i=1

bi+\ :
3

i=1

ci+<3=0,

since �3
i=1 bi=0. This proves the required result. K

As mentioned in Kochar and Kirmani [12], in case X1 , ..., Xn is a
random sample from a distribution with log-convex density, then

Di Plr Di+1 , i=1, ..., n&1. (3.13)

It will be interesting to know whether (3.13) holds in the case of
independent exponential random variables with unequal scale parameters.

Dispersive Ordering between Normalized Spacings. Now we study
dispersive (or variability) ordering between normalized spacings. Let X and
Y be two random variables with distribution functions F and G, respec-
tively. We say that distribution G is less dispersed than F(GPdisp F ) if

G&1(v)&G&1(u)�F &1(v)&F &1(u) for 0<u�v<1.

This means that the difference between any two quantiles of G is smaller
than the difference between the corresponding quantiles of F. One of the
consequences of GPdisp F is that var(Y)�var(X). For other properties
of dispersive ordering, see Chapter 2 of Shaked, Shanthikumar, and
collaborators [18].

Bagai and Kochar [2] proved that if GP hr F and if either F or G is
DFR than GPdisp F. Since likelihood ratio ordering implies hazard rate
ordering, the proof of the next theorem follows from the above result,
Theorem 3.3, and the DFR properties of spacings as established in
Corollary 2.1.
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Theorem 3.7. Let F� i (x)=exp(&*ix) and F� i*(x)=exp(&*� x) for
i=1, ..., n, where *� =s�n. Let (D1* , ..., Dn*) be the normalized spacings
associated with (F� 1* , ..., F� n*). Then

(a)
D*i :n Pdisp Di :n for i=2, ..., n,

(b) for n=2,

(*1 , *2)pm (*1* , *2*) O D2:2(*1 , *2)pdisp D2 :2(*1* , *2*).

4. Dependence between Order Statistics

Boland, Hollander, Joag-Dev, and Kochar [8] have studied in detail the
different kinds of dependence that hold between order statistics from inde-
pendent, but nonidentical, distributions. In particular, it follows from their
Theorem 2.2 that Xi :n is stochastically increasing in X1:n for any i>1. In
the next theorem, we strengthen this result. First, we give the definition of
upper orthant ordering.

Definition 4.1. Let X=(X1 , ..., Xn) be an n-dimensional random
vector with joint survival function F� (x1 , ..., xn) and let Y be another
n-dimensional random vector with joint survival function G� (x1 , ..., xn). If

F� (x1 , ..., xn)�G� (x1 , ..., xn) for all x (4.1)

then we say that X is smaller than Y in the upper orthant order.

For properties and implications of this ordering, see Section 4.G of
Shaked, Shanthikumar, and collaborators [18]. In the next theorem, we
prove that (X2:n , ..., Xn :n) is increasing in X1:n in the sense of upper orthant
order.

Theorem 4.1. Let X1 , ..., Xn be independent random variables with Xi

having the exponential distribution with survival F� i (t)=exp(&*i t), t�0, for
i=1, ..., n. Then (X2 :n , ..., Xn :n) is increasing in X1 :n in the sense of upper
orthant order.

Proof. It follows from Theorem 2.1(i) that under the above assump-
tions X1 :n is independent of (X2:n&X1:n , ..., Xn :n&X1 :n). Now

P[X2:n�x2 , ..., Xn :n�xn | X1:n=x1]

=P[X2:n&X1:n�x2&x1 , ..., Xn :n&X1 :n�xn&x1 | X1:n=x1]

=P[X2:n&X1:n�x2&x1 , ..., Xn :n&X1 :n�xn&x1]

which is obviously nondecreasing in x1 . This proves the required result. K

The above result can be easily extended from exponential distributions to
the case of distributions with proportional hazards. It may be noted that

82 KOCHAR AND KORWAR



File: 683J 158915 . By:BV . Date:07:07:07 . Time:12:40 LOP8M. V8.0. Page 01:01
Codes: 3937 Signs: 3307 . Length: 45 pic 0 pts, 190 mm

the present proof is much simpler and more general than the one originally
given by Boland, Hollander, Joag-Dev, and Kochar [8, Theorem 2.2].

We are grateful to the referees for their helpful comments and sugges-
tions which have greatly improved the presentation of the paper.
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