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If X1 , ..., Xn are random variables we denote by X(1)�X(2)�. . .�X(n) their
respective order statistics. In the case where the random variables are independent
and identically distributed, one may demonstrate very strong notions of dependence
between any two order statistics X(i) and X ( j) . If in particular the random variables
are independent with a common density or mass function, then X(i) and X ( j) are
TP2 dependent for any i and j. In this paper we consider the situation in which the
random variables X1 , ..., Xn are independent but otherwise arbitrarily distributed.
We show that for any i<j and t fixed, P[X( j)>t | X(i)>s] is an increasing function
of s. This is a stronger form of dependence between X(i) and X( j) than that of
association, but we also show that among the hierarchy of notions of bivariate
dependence this is the strongest possible under these circumstances. It is also shown
that in this situation, P[X( j)>t | X(i)>s] is a decreasing function of i=1, ..., n for
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any fixed s<t. We give various applications of these results in reliability theory,
counting processes, and estimation of conditional probabilities. We also consider
the situation where X1 , ..., Xn represent a random sample of size n drawn without
replacement from a linearly ordered finite population. In this case it is shown that
X(i) and X ( j) are TP2 dependent for any i and j, and the implications are dis-
cussed. � 1996 Academic Press, Inc.

1. Introduction

There are several well-known notions of positive dependence between
two random variables. There is a large literature on this topic with impor-
tant contributions by Lehmann [16], Esary and Proschan [9], Harris
[10], Barlow and Proschan [4], and Shaked [19], amongst others. The
reader would also do well to see Jogdeo [11] and Block, Sampson, and
Savits [6] for further discussions. Perhaps the strongest notion of
dependence between random variables S and T is that of TP2 dependence,
a concept developed extensively by Karlin [12]. S and T are TP2 depend-
ent if their joint density f (s, t) is totally positive of order 2 in s and t, or
more precisely if

} f (s1 , t1)
f (s2 , t1)

f (s1 , t2)
f (s2 , t2) }�0

whenever s1<s2 , t1<t2 . The random variables S and T are right corner set
increasing (RCSI) if for fixed s and t, P[S>s, T>t | S>s$, T>t$] is
increasing in s$ and t$. We will say that a function is increasing (decreasing)
if it is nondecreasing (nonincreasing). Shaked [19] and Kochar and Desh-
pande [15] have noted that S and T are RCSI if and only if r(t | S>s) is
decreasing in s for every fixed t, where r(t | S>s) denotes the hazard rate
of the conditional distribution of T given S>s. We say that T is stochasti-
cally increasing in S if P(T>t | S=s) is increasing in s for all t, and write
SI(T | S). Shaked [19] has shown that SI(T | S) if and only if R(t | S=s)
is decreasing in s, where R represents a cumulative hazard (failure rate)
function. Lehmann [16] uses the term positively regression dependent to
describe SI. If P(T>t | S=s) is decreasing we say that T is stochastically
decreasing in S (written SD(T | S)) or that T is negatively regression
dependent on S.

We say that T is right tail increasing in S if P[T>t | S>s] is increasing
in s for all t, and denote this relationship by RTI(T | S). If S and T are
continuous lifetimes, then T is right tail increasing in S if r(s | T>t)�
r(s | T>0)=rS(s) for all s>0 and for each fixed t. We say T is left
tail increasing in S if P[T<t | S<s] is decreasing in s for all t, and we

76 boland et al.
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denote this by LTD(T | S). Barlow and Proschan [4] define LTD(T | S) to
mean P[T�t | S�s] is decreasing in s for all t, and, of course, this
is equivalent to our definition for continuous random variables. If
P(T>t | S>s) is decreasing in s we say that T is right tail decreasing in
S and write RTD(T | S). Similarly LTI(T | S) means T is left tail increasing
in S. The random variables S and T are associated (written A(S, T)) if
Cov[1(S, T ), 2(S, T )]�0 for all pairs of increasing binary functions 1
and 2. We say S and T are positively quadrant dependent if

P[S�s, T�T]�P[S�s]P[T�t]

for all s, t, and we write PQD(S, T). The various implications between
these notions of positive dependence, at least for continuous random
variables, are summarised by Fig. 1 from Barlow and Proschan [4] (see
also Chap. 5 of Tong [21]).

Let X(1)�X(2)� } } } �X(n) denote the order statistics of the random
variables X1 , ..., Xn . There is an extensive literature on the dependence
structure of the order statistics X(i) and X( j) . Tukey [22] showed (see also
Kim and David [14]) that if the Xi 's are independent with common dis-
tribution function which is ``subexponential'' in both tails, then the
covariance of X(i) and X ( j) decreases as i and j draw apart. Bickel [5]
proved that in the independently distributed case with common density,
Cov(X(i) , X( j))�0 for all i and j. Of course, when X1 , ..., Xn are inde-
pendent (but not necessarily identically distributed) the order statistics
(X(1) , ..., X(n)) are associated. This yields many useful product inequalities
for order statistics of independent random variables and, in particular,
implies that in this case Cov(X(i) , X( j))�0 for all i and j (see also Lehmann

Fig. 1. Implications among notions of bivariate dependence.

77order statistics
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[16]). Recent developments concerning the stochastic comparison of order
statistics are reviewed in Kim, Proschan, and Sethuraman [13] (where
comparisons of individual order statistics and vectors of order statistics
from underlying heterogeneous distributions are treated with the use of
majorization and Schur functions) and in the extensive text ``Stochastic
Orders and Their Applications'' by Shaked and Shanthikumar [20]. Other
interesting results concerning the log concavity property of the sequence
of distribution functions of the i th-order statistics from underlying hetero-
geneous distributions are treated in the series of papers by Bapat and Beg
[3], Sathe and Bendre [18], and Balasubramanian and Balakrishnan [2].

It seems natural to expect some degree of positive dependence between
the order statistics X(i) and X( j) based on the random variables X1 , ..., Xn .
In the independent identically distributed case (with a common density or
mass function) one may readily verify that the order statistics X(i) and X( j)

are TP2 dependent for any i and j. To see this in the continuous case note
that for i<j, the joint density of X(i) and X ( j) is given by

f(i) , ( j)(s, t)

={c(i, j, n)F i&1(s)[F(t)&F(s)] j&i&1[F� (t)]n&j f (s) f (t),
0,

s�t,
otherwise,

where c(i, j, n) is a normalizing constant. Algebraically it is easy to show
that f(i), ( j)(s1 , t1)f(i), ( j)(s2 , t2)�f (i), ( j)(s1 , t2) f(i), ( j)(s2 , t1) for any s1<s2

and t1<t2 is equivalent to

[F(t1)&F(s1)][F(t2)&F(s2)]�[F(t2)&F(s1)][F(t1)&F(s2)],

which is always true. Hence for the case where X1 , ..., Xn are independent
identically distributed and continuous (or discrete), we have that X(i) and
X( j) are positively dependent in any of the senses discussed above. Of course
in the independent identically distributed case the order statistics have the
Markov property implying another type of dependence (see Chap. 1 of
David [7] or Chap. 1 of Arnold et al. [1]). These results suggest that
perhaps similar notions of dependence might hold for the order statistics
X(i) and X( j) based on a set of independent (but not necessarily identically
distributed) random variables X1 , ..., Xn .

In Section 2 we investigate the RCSI and SI properties of the order
statistics X(i) and X( j) in this situation. We give an example where n=2
and X1 , X2 are exponentially distributed with different hazard rates yet X(1)

and X(2) are not RCSI. Another example shows that X(2) is not necessarily
SI in X(1) , although we also prove that X(i) is SI in X(1) for any i=2, ..., n

78 boland et al.
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whenever X1 , ..., Xn are independent with proportional hazards on a
common support. In Section 3 we prove the very general result that
when X1 , ..., Xn are independent but with arbitrary distributions, then
RTI(X( j) | X(i)) for any 1�i<j�n. A duality argument implies there-
fore that LTD(X(i) | X( j)) holds for any 1�i<j�n. In the process of
proving the RTI property of these order statistics, we also show that
P(X( j)>t | X(i)>s) is a decreasing function of i=1, ..., n for any fixed s�t.
Applications of these results are given in reliability theory, counting pro-
cesses, and estimation of conditional probabilities.

In Section 4 we discuss the dependence of X(i) and X ( j) when X1 , ..., Xn

are identically distributed but not independent. An elementary example
shows that even when n=2 it does not necessarily follow that
RTI(X(2) | X(1)). We also consider however the important special case
when (X1 , ..., Xn) represents a random sample taken without replacement
from a finite linearly ordered population (with possible replications). We
show that in this case X(i) and X ( j) are TP2 dependent, and give applica-
tions to the finite sampling problem.

2. RCSI and SI Properties of Order Statistics

The concept of RCSI dependence was introduced by Harris [10] in
order to define multivariate increasing failure (hazard) rate functions. The
following example shows, however, that in general X(i) and X( j) are not
RCSI (and, hence, implicitly not TP2 dependent).

Example 2.1. Let n=2, and suppose X1 , X2 are independent and
exponentially distributed with means 1 and 0.5, respectively. Then X(1) and
X(2) have a joint survival function given by

F� (1), (2)(s, t)=F� 1(s)F� 2(t)+F� 1(t)F� 2(s)&F� 1(t)F� 2(t)

=e&(*1s+*2t)+e&(*1 t+*2s)&e&(*1+*2)t for s<t.

Now X(1) and X(2) are RCSI implies in particular that Prob[X (1)>s,
X(2)>t | X(1)>s, X(2)>t$]=F� (1), (2)(s, t)�F� (1), (2)(s, t$) A in s for any t$<t.
However,

F� (1), (2)(0, 5)�F� (1), (2)(0, 2)=0.0449>0.0411=F� (1), (2)(1, 5)�F� (1), (2)(1, 2),

and, hence, (X(1) , X(2)) are not RCSI, even in the exponentially distributed
case. K

79order statistics
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Although X(2) and X(1) are not RCSI in Example 2.1, the following result
shows that in this case is SI(X(2) | X(1)).

Theorem 2.2. Let X1 , ..., Xn be independent random variables with dif-
ferentiable densities and proportional hazard functions on an interval I (where
the support of Xi=I for each i). Then X(i) is SI in X(1) .

Proof. Let fi and ri denote, respectively, the density function and the
hazard rate function of Xi for i=1, ..., n. From the proportional hazards
assumption, there exist positive constants :i such that ri (x)=:ir1(x) for
i=1, ..., n (:1=1).

For s<t in the interval of common support, let us denote by Hij (s, t) the
probability that at least n&j+1 of the X 's in [X1 , ..., Xi&1 , Xi+1 , ..., Xn]
are greater than t and the others lie in the interval (s, t]. Then we have

P[X( j)>t | X(1)=s]=
:n

i=1 fi (s) Hij (s, t)

:n
i=1 fi (s) >k{i F� k (s)

=
:n

i=1 :iF� i (s) Hij (s, t)

(:n
i=1 :i) >n

k=1 F� k (s)

=
1

:n
i=1 :i

:
n

i=1

:i Cij (s, t),

where Cij (s, t) is the probability that at least (n&j+1) out of (n&1) events
occur where the probability of the k th event is pk=F� k(t)�F� k(s), which is
nondecreasing in s. Hence Cij (s, t) is a nondecreasing function of s for s<t
and the required result follows. K

A similar argument would show that if X1 , ..., Xn have the property that
f1(s)�F1(s), ..., fn(s)�Fn(s) are proportional then X(i) is SI in X(n) . We now
give an example illustrating that, in general, X(2) is not SI in X(1) .

Example 2.3. Let X1 and X2 be independent random variables which are
uniformly distributed on A1=(0, 3) _ (10, 13) and A2=(2, 5) _ (12, 15),
respectively. Then

P(X(2)>13 | X(1)=1)= 1
3>P(X(2)>13 | X(1)=4)=0

and, hence, X(2) is not SI in X(1) .

Despite the partial results on RCSI and SI for order statistics presented
in this section, we will show in Section 3 that RTI(X( j) | X(i)) holds, in
general, for any i<j when X1 , ..., Xn are independent random variables.

80 boland et al.
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3. Right Tail Increasing Property of Order Statistics

We now consider the dependence relation RTI of X( j) and X(i) . Note that

RTI(X( j) | X(i))

� P[X( j)>t | X(i)>s] A s for any fixed t

� P[&[X( j)]<&t |&[X(i)]<&s] A s for any fixed t

� P[[&X](n&j+1)< &t | [&X](n&i+1)<s] a s for any fixed t.

Hence X( j) RTIX(i) � [�X](n&j+1)LTD[�X](n&i+1) , where [�X](k) repre-
sents the k th-order statistic of [&X1 , ..., &Xn]. Therefore RTI(X( j) | X(i))
holds in general (that is, for any set of n independent random variables),
if and only if LTD(X(n&j+1) | X(n&i+1)) holds in general. We will see in
this section that RTI(X( j) | X(i)) holds in general for all 1�i<j�n and,
hence equivalently, that LTD(X(i) | X ( j)) for all 1�i<j�n.

If X1 , ..., Xn are independent random variables (with possibly different
distributions) we denote by N(u) the counting variable representing the
number of observations in [X1 , ..., Xn] which are less than or equal to u.
It is easy to see that the events [X( j)>t] and [N(t)<j] are identical. For
i<j we want to show that RTI(X( j) | X(i)) or that P[X( j)>t | X(i)>s] A in
s for any fixed t. Since i<j, we need only consider s<t, and, therefore, this
is equivalent to showing that

P[N(t)<j | N(s2)<i]�P[N(t)<j | N(s1)<i] (3.1)

for every s1<s2<t. For the sake of brevity we let N1=N(s1), N2=
N(s2)&N(s1), N3=N(t)&N(s2), N4=n&N(t), and, hence, the inequality
(3.1) becomes

P[N4>n&j | N1+N2<i]�P[N4>n&j | N1<i]. (3.2)

This inequality may be restated in terms of what one may call a generalized
multinomial distribution (G-multinomial). Here we have n independent
trials, and each trial consists of putting a ``ball'' into one of four boxes. The
probabilities of placement into the four boxes may vary from one trial to
the next (corresponding to the different distributions of X1 , ..., Xn), and Nl

(for l=1, 2, 3, and 4) will denote the total number of balls placed in box
l after the n trials. Using this notation for the generalized multinomial dis-
tribution, we may interpret (3.2) in the following way: The probability that
the number of balls in box 4 exceeds n&j, knowing that the total number
in boxes 1 and 2 is less than i is greater than or equal to the probability that
the number of balls in box 4 exceeds n&j, knowing only that the total
number in box 1 is less than i. Given the negative dependence between the

81order statistics
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Nl 's (l=1, 2, 3, and 4), this result seems most plausible. The following
lemma will be useful in completing the proof.

Lemma 3.1. Let (N1 , N2 , N3 , N4) have the generalized multinomial dis-
tribution as above. Then

(a) SD(N4 | N1), or equivalently, P[N4<k | N1=l] is nondecreasing
in l for any k=1, ..., n and

(b) LTI(N4 | N1), or equivalently, P[N4�k | N1<l] is decreasing in
l for any k=0, 1, ..., n.

Proof. Let Ui be the indicator of the event that the i th ball goes to Box
1. Then Ui , i=1, ..., n, are independent random variables each having a
logconcave (also known as Polya frequency of type 2) density function.
According to a theorem of Efron [8], if h is a real function which is non-
decreasing in each Ui then

E[h(U1 , ..., Un) | 7Ui] is nondecreasing in 7Ui .

For fixed k, 1�k�n, define h(U1 , ..., Un)=P[N4<k | U1 , ..., Un]. When
U1 , ..., Un are given, the distribution of N4 can be viewed as that obtained
by performing independent trials with the balls for which Ul=0. For a
particular j, if Uj is increased from 0 to 1, keeping Ui fixed for i{j, it is
seen that h will increase since the balls used in the independent trials would
be the same as before except for the j th ball. Thus by Efron's theorem

E[h(U1 , ..., Un) | 7Ui]=P[N4<k | 7Ui] is nondecreasing in 7Ui .

But N1=7Ui and, hence, the assertion (a) follows.
We have already seen (see Fig. 1) that the bivariate notion of SI implies

that of LTD and, therefore, in a similar way SD O LTI. Hence, part (b)
follows from (a). K

Corollary 3.2. Let X1 , ..., Xn be independent random variables. Then
for any s<t and j given

(a) P[X( j)>t | X(i)>s] is a decreasing function of i and
(b) P[X( j)<s | X(i)<t] is an increasing function of i.

Proof. (a) Letting s1=s we have from part (b) of Lemma 3.1 that

P[N4>n&j | N1<i]=P[N(t)<j | N(s)<i]=P[X( j)>t | X(i)>s]

is decreasing in i. (b) follows in a similar fashion. K

82 boland et al.
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We will now establish the validity of (3.2). In the sequence of n trials we
arbitrarily select one trial (without loss of generality the last). For each
l=1, 2, 3, 4 we decompose Nl=N$l +N"l , where N$l refers to the first
(n&1) trials and N"l to the last trial. Wet let pl=P[N"l =1] for
l=1, 2, 3, 4. Then with the above notation we have the following.

Lemma 3.3. For any pair of integers (k, l ), k, l�1,

P[N$4+N"4 �k | N$1+N"1+N"2<l]�P[N$4+N"4�k | N$1+N"1<l],

or equivalently,

P[N$4+N"4�k, N$1+N"1+N"2<l]P[N$1+N"1<l]

�P[N$4+N"4�k, N$1+N"1<l]P[N$1+N"1+N"2<l]. (3.3)

Proof. We use the notation A(k, l)=P[N$4�k, N$1<l] and
B(l )=P[N$1<l]. From part (b) of Lemma 3.1, we have

A(k, l&1)B(l )&A(k, l )B(l&1)�0. (3.4)

By assigning the value 1 successively to each of N"1 , N"2 , N"3 , and N"4 on
both sides of (3.3) we get

[ p4A(k&1, l )+( p1+p2)A(k, l&1)+(1&p1&p2&p4)A(k, l )]

_[(1&p1)B(l )+p1B(l&1)] (3.5)

on the left hand side and

[ p4 A(k&1, l )+p1A(k, l&1)+(1&p1&p4)A(k, l )]

_[(1&p1&p2)B(l)+( p1+p2)B(l&1)] (3.6)

on the right side.
After carrying out the multiplications and subtracting (3.6) from (3.5),

the resulting expression contains only two types of terms: those having
factor p2p4 and others having factor p2 . The expression obtained by gather-
ing the terms having factor p2p4 is

[A(k&1, l )B(l)&A(k&1, l )B(l&1)+A(k, l )B(l&1)&A(k, l )B(l )],

which reduces to

A(k&1, l )P[N$1=l&1]&A(k, l )P[N$1=l&1]

=P[N$4=k&1, N$1<l]P[N$1=l&1],

83order statistics
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and, hence, is nonnegative. The expression with factor p2 coincides with the
left side of (3.4) and is already known to be nonnegative. This establishes
(3.3) and, hence, Lemma 3.3. K

Theorem 3.4. Let X1 , ..., Xn be independently distributed random
variables. Then for any i<j, RTI(X( j) | X(i)) and LTD(X(i) | X( j)).

Proof. The result of Lemma 3.3 may be interpreted as follows. For a
given generalized multinomial (N1 , N2 , N3 , N4) if the probability vector
( pi1 , pi2 , pi3 , pi4) of outcomes for the i th trial is replaced by the vector
( pi1+pi2 , 0, pi3 , pi4) then the distribution of N4 given N1<l becomes
stochastically larger. Doing this successively for all ``trials'' yields the
desired inequality (3.2). K

Having established that RTI(X( j) | X(i)) holds in general when i<j, one
might naturally ask if one may also show that RTI(X(i) | X ( j))? The
following example shows that this is not true in general.

Example 3.5. Let X1 take the values 1
2 or 1 with probability 1

2, and let
X2 be uniform on [0,1]. Assuming X1 and X2 are independent,

P \X(1)>
1
4 } X(2)>s+=

7&4s
8&4s

a s for s # _1
2

, 1& .

Hence X(1) is not RTI in X(2) .

We now give some applications of Corollary 3.2 and Theorem 3.4.

Example 3.6. Application to counting processes. Let X1 , ..., Xn be n
independent lifetimes, and for any s let N(s) be the number of lifetime
observations �s. Then N(s)�i&1 � X(i)>s. Corollary 3.2 and Theorem
3.4 imply that for any j and t, P[N(t)<j | N(s)<i] is an increasing func-
tion of s<t (for any fixed i<j) and a decreasing function of i=1, ..., n (for
any fixed s<t). In particular suppose X1 , ..., X30 represent the independent
lifetimes of 30 patients in a clinical study and we are interested in the
probability that at least 10 of them survive 5 years (equivalently, that
N(5)�20). Then P[N(5)�20 | N(s)�i] is increasing over s # [0, 5] for
any fixed i<20 and decreasing as a function of i # [1, 2, ..., 20] for any
fixed s<5. In terms of censoring s might represent the time at which
observations in the study are censored, or in other cases censoring might
take place after the i th observed lifetime.

Example 3.7. Application in reliability. A system of n components
which functions if and only if at least k of the n components function is
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called a k out of n system. Parallel systems and series systems are elemen-
tary examples and, generally speaking, k out of n systems form the building
blocks of many more complex systems. Suppose we are interested in the
probability of a k out of n system with independent components surviving
a given mission time t0 and that we periodically inspect the system at times
s1 , s2 , ..., sm . Suppose that over these successive inspection times we are
able to observe that for some i>k, X(n&i+1)>sl for l=1, ..., m. In such a
situation we note that the number of working components i at any inspec-
tion point exceeds k, and, hence, the mission time is more and more likely
to be achieved since P[X(n&k+1)>t0 | X(n&i+1)>sl] is increasing in
l=1, ..., m.

Example 3.8. Application to an estimation problem. Let X=(X1 , ..., Xn)
be a vector of independent random variables, but where the distributions
of the Xi 's might vary. There are situations (see the previous example)
where it might be desirable to estimate P[X( j)>t | X(i)>s] as a function
of s for some (or several-fixed values of t and i<j. Theorem 3.4 states that
in fact P[X( j)>t | X(i)>s] is an increasing function of s. This result is use-
ful therefore in identifying inadmissible estimators of g(s)=P[X( j)>t |
X(i)>s]. Let us suppose, for example, that we observe k independent
copies of X, say X1, ..., Xk, and from that sample we wish to estimate
P[X( j)>t | X(i)>s]. In fact let us consider the following particular realiza-
tions where n=6=k:

X1=(1.4, 1.3, 3.8, 8.2, 6.0, 9.6)

X2=(2.2, 2.1, 1.2, 6.3, 9.2, 13.8)

X3=(1.4, 1.3, 1.2, 7.5, 8.6, 6.8)

X4 =(1.6, 1.7, 1.9, 1.8, 9.0, 8.0)

X5 =(1.7, 1.9, 1.8, 5.1, 10.0, 9.0)

X6=(1.9, 1.8, 2.0, 4.1, 12.0, 13.0).

Then a natural estimator of P[X(4)>4 | X(1)>1] is

P� [X(4)>4 | X(1)>1]=
number of X's for which X(4)>4 and X (1)>1

number of X's for which X(1)>1
=

5
6

.

Similarly, a natural estimator of P[X(4)>4 | X(1)>1.5] is

P� [X(4)>4 | X(1)>1.5]= 2
3.

Hence, although in theory P[X(4)>4 | X(1)>1]�P[X (4)>4 | X(1)>1.5],
the ``natural'' estimators of these quantities display the reverse order. Hence
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the ``natural'' estimation scheme here is inadmissible. This gives rise there-
fore to the question: How should the estimators be adjusted so that they
satisfy the monotonicity properties of the parameters being estimated?
Although we have not answered this question, our result helps to identify
inadmissible schemes.

4. Order Statistics from a Linearly Ordered Finite Population

It is natural to ask to what extent one may relax the independence
assumption in Theorem 3.4 and still have the property that X( j) is right tail
increasing in X(i) for i<j. Even if one restricts attention to the case where
X1 , ..., Xn have a permutation invariant distribution function, this is not the
case and one may easily construct counterexamples. This may also be seen
by making use of an observation of Kim and David [14]. They noted that
if X1 and X2 are nonconstant random variables but where X1+X2

is constant, then 0=V(X1+X2)=V(X(1)+X(2))=V(X(1))+V(X (2))+
2Cov(X(1) , X(2)) and hence, Cov(X(1) , X(2))<0. Now RTI(X(2) | X(1)) O
X(2) and X(1) are associated O Cov(X(2) , X(1))�0, and, therefore, here we
cannot have RTI(X(2) | X(1)).

We now consider the important example of sampling without replace-
ment from a finite population which is linearly ordered. We begin with the
situation in which there is no replication in the population, and, hence,
without loss of generality the population is [1, ..., N].

Proposition 4.1. Let X1 , ..., Xn represent the observations from a simple
random sample of size n drawn without replacement from [1, ..., N]. Then
for any i and j, the joint mass function f(i), ( j)(s, t) of (X(i) , X( j)) is TP2 in s
and t. Hence, in particular SI(X( j) | X(i)) (P[X( j)>t | X(i)=s] A s) and
RTI(X( j) | X(i)) (P[X( j)>t | X(i)>s] A s).

Proof. Without loss of generality we assume i<j. Then

f(i), ( j)(s, t)=P[X(i)=s, X( j)=t]={
( s&1

i&1 )( t&s&1
j&i&1 )( N&t

n&j )

( N
n )

, s<t,

0, otherwise.

Hence, the joint mass function is TP2 in s and t if and only if s1<s2 ,
t1<t2 O

\t1&s1&1
j&i&1 +\t2&s2&1

j&i&1 +�\t1&s2&1
j&i&1 +\t2&s1&1

j&i&1 +. (4.1)
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To demonstrate this it clearly suffices to show that in general the function
g(s, t)=( t&s

k ) is TP2 in s and t for any k, or, equivalently, that the function
h(t)=( t

k) is PF2 (logconcave) in t for any k. Note that it is easy to check
that ( t+1&(s+1)

k )( t&s
k )�( t+1&s

k )( t&(s+1)
k ), and the TP2 property of g(s, t)

follows. The interested reader should consult Karlin [12]. K

We note that in the sampling problem from [1, ..., N], the order
statistics have the Markov property. It is also easy to show that Xi and
Xj are negatively correlated and Corr(Xi , Xj)=Corr(X1 , X2)= &1�N.
However, the above proposition implies that X(i) and X ( j) are in particular
associated for any i and j, and, hence, Corr(X(i) , X( j))�0. In fact, Arnold
et al. [1] show that Corr(X(i) , X( j))=- (i(n&j+1))�j(n&i+1).

Example 4.2. LOTTO. Let X1 , ..., X6 represent the numbers selected
from [1, ..., 49] in a realization of LOTTO 49. Then Proposition 4.1
implies, in particular, that P[X(6)>t | X(1)>s] and P[X(6)>t | X (1)=s]
are increasing functions of s for any fixed t.

We now extend Proposition 4.1 to the situation when one samples from
a linearly ordered population with replication.

Theorem 4.3. Let (X1 , ..., Xn) represent the observations in a simple
random sample from a linearly ordered population with possible repetition.
Then for any i and j, X(i) and X( j) have a TP2 joint mass function.

Proof. If (S, T) have TP2 joint mass function, then it is easy to see that
(g(S), h(T )) also has TP2 joint mass function for any nondecreasing func-
tions g and h. To see this suppose s1<s2 and t1<t2 . Then

fg(S), h(T )(s2 , t2)fg(S), h(T)(s1 , t1)

= :

g(u2)=s2, h(v2)=t2

(u2, v2)

fS, T (u2 , v2) :

g(u1)=s1, h(v1)=t1

(u1, v1)

fS, T (u1 , v1)

� :

g(u1)=s1, h(v2)=t2
(u1, v2)

fS, T (u1 , v2) :

g(u2)=s2, h(v1)=t1
(u2, v1)

fS, T (u2 , v1)

=fg(S), h(T)(s1 , t2)fg(S), h(T )(s2 , t1).

Without loss of generality we can assume the population consists of the
numbers 1, ..., M, where there are mi (>0) values equal to i for i=1, ..., M
and N=m1+. . .+mM is the size of the population. Then the order
statistics X(i) and X( j) based on a sample of size n from our population
(with repetitions) are nondecreasing functions of the order statistics Y(i)

and Y( j) based on a random sample of size n from the population (without

87order statistics
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repetitions) [1, ..., N] and, hence, the result follows from Theorem 4.1 and
the above observation. K

Corollary 4.4. Let X1 , ..., Xn represent a simple random sample drawn
without replacement from a linearly ordered finite population. Then for any
i and j, P[X( j)>t | X(i)=s] and P[X( j)>t | X(i)>s] are increasing in s.

Example 4.5. A simple random sample of 100 individuals is to be
selected from the residents in a city and the resulting ages observed.
Suppose we are interested in the chances of at least 10 octogenarians in
the sample. Then P(X(91)>79 | X(i)>s) and P(X(91)>79 | X(i)=s) are
increasing functions of s for any i.

The finite sampling problem discussed here provides an important
example where X1 , ..., Xn are identically distributed (but not independent),
yet RTI(X( j) | X(i)) for any i and j. We have seen, however, that a permuta-
tion symmetric distribution function for (X1 , ..., Xn) is not a sufficient con-
dition to imply that RTI(X( j) | X(i)). Other examples exist where despite
dependence between X1 , ..., Xn , it does follow that RTI(X( j) | X (i)). It might
be worth noting that, even though the original observations might be
dependent, if they are associated then so are the order statistics
(X(1) , ..., X(n)).

Example 4.6. The random vector (T1 , T2) has the Marshall�Olkin (see
Marshall and Olkin [17] or Chap. 5 of Barlow and Proschan [4])
bivariate exponential distribution if the joint survival function is given by

F� (t1 , t2)=P[T1>t1 , T2>t2]=e&*1t1&*2t2&*12max(t1, t2)

for t1�0, t2�0. If T(1)�T(2) are the order statistics of (T1 , T2), then

P[T(2)>t | T(1)>s]=e&*12(t&s)[e&*1(t&s)+e&*2(t&s)&e&(*1+*2)(t&s)].

It is routine to check that P[T(2)>t | T(1)>s] A s.

One might seek to establish conditions on the joint distribution of
X1 , ..., Xn (in, for example, the case where they have a permutation sym-
metric distribution function) to ensure that RTI(X( j) | X(i)) for any i<j.
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