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Abstract

Let F and G be_two sur_vival functions. Sometimes it is
known a prior that G(z) > F/(x) for all z. In the one-sample

case when F is known, the estimator. G, = max(G,,. F) of
the survival function G. has been considered by many re-
searchers in the literature. Here (7, denotes the empirical
survival function based on a sample of size n from the pop-
ulation with survival function (i. In the two-sample case
when both F and (7 are unknown, the corresponding esti-

mators are, Gm » = max(G,. F,) and Fm n = min(Gp. F,).
These estimators, typically. have jumps at the data points
and there is naturally an interest in finding smooth esti-
mators. The popular smoothing methods do not guarantee
the stochastic ordering property in the resulting estimators.
This paper presents an adaptation of the smoothing tech-
nique introduced in Chaubey and Sen [ Statistics and Deci-
sions 14, 1996] and investigates the asymptotic properties
of the resulting estimators. Some numerical illustrations are
also provided.
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1 Introduction

Let G and F denote the survival functions of two random variables X
and Y, respectively. The random variable X is said to be stochasti-
cally larger than Y (written as X >, Y) if G(x) > F(r) vx. This
concept was introduced by Lehmann (1955) and has found natural ap-
plications in reliability and life testing situations. For example. in an
accelerated life-testing situation. it is natural to assume that survival
times are larger under lower stress condition than those under the nor-
mal stress conditions. Whitt (1980) considered a stronger version of
the concept of stochastic ordering known as uniform stochastic order-
ing which has recently been studied by several authors [see Mukerjee
(1996) and references there in], however, we are not going to deal with
the latter concept in the present paper. Sometimes it is known a prior
that X >,, Y and we wish to estimate the survival functions under
this order restriction. The empirical survival functions (esf), in spite
of their many good properties. may not preserve this ordering. As a
result nonparametric maximum likelihood estimators (NPMLE) have
been developed and studied under such order constraints (see Dykstra
(1982), Dykstra and Feltz (1989) and Feltz and Dykstra (1985)). These
estimators are usually quite complicated and their distributional prop-

erties are not fully known. Only recently (see Praestergaard and Huang

(1996)) asymptotic theory for NPMLEs has been developed. the limit-

ing distributions, however, are not known in closed form. Some other
drawbacks have been pointed out by Dykstra. Kochar and Robertson
(1991) and Rojo and Ma (1996). Thus an alternative approach may be
preferable. For the one-sample problem when F is known and a random
sample (X, X;..... X},) from (& is available. the following estimator has
been considered by Ma (1991) and Puri and Singh (1992):

G = max(F.G,,) (1)
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where (&, denotes the empirical survival function based on the random

sample (X;, Xo, s XNnlide

m

Gl Zf (X; > z) (:
m
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—

This estimator is easy to compute in contrast to the non-parametric
MLE. Furthermore, as pointed out in Rojo (1995) and Rojo and Ma
(1996), it is strongly uniformly consistent and dominates the empirical
survival function for a wide class of loss functions. Rojo and Ma (1996)
also showed that the above estimator has a uniformly smaller (posi-
tive) bias than the corresponding NPMLE and further demonstrated
through simulation studies that it has smaller mean-squared error for a
variety of distributions. Lo (1987) considered the two-sample problem
when both F and G are unknown and independent random samples
(Y1.Y5,...,Y,) and (X4, Xs, ..., X,») are available from the two distrib-

utions. The proposed estimators in this case are,

-

Gmn = max(Gn, F,) (3)

and

f%m‘n = min(G,., F,) (4)

Similar considerations have led Rojo and Samaniego (1993) and Muk-
erjee (1996) to consider alternative estimators in the case of uniform
stochastic ordering.

When the distributions are assumed to be continuous, many applied
practitioners would prefer to have smooth estimators and as such there
is a lot of interest in smooth estimation of survival functions. Kim
and Proschan (1991) proposed a piecewise exponential survival func-
tion to be preferred over the usual esf. There is a lot of literature on
smooth estimation of density and distribution functions (see the mono-
graphs by Devroye (1989), Hardle (1991), Silverman (1986) and Wertz

[
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(1978)), but there have not been many methods specifically tailored for
smooth estimation of survival functions of nonnegative random vari-
ables. Bagai and Prakasa Rao (1995) adapt asymmetric kernel method
in estimating a density with positive support, where as Chaubey and
Sen (1996) propose a new technique based on the so-called Hille’s the-
orem in analysis. The adaptation of Bagai and Prakasa Rao’s method
in smoothing ém, ém‘n and ﬁm.n is not clear as it deals with smooth
estimator of a probability density function, however, that of Chaubey
and Sen may be readily adapted, because it deals with smoothing of a
distribution function directly. However, such smoothing may destroy
the stochastic ordering property inherent in the original estimators.
In this paper, we modify the method in Chaubey and Sen (1996) to
provide smooth estimators of survival functions that are stochastically
ordered. The case of uniform stochastic ordering will be considered
separately. The proposed estimators preserve the stochastic ordering
property and retain the desirable large sample properties of unsmoothed
estimators as given in Rojo (1995) and Rojo and Samaniego (1996).
The smooth estimators are introduced in Section 2 and their asymptotic
properties are established in Section 3. The last section gives some

illustrative examples.

2 Smooth Estimators of Survival Functions

2.1 One-Sample Problem

Let GG and F be absolutely continuous such that G(x) > F(z) Yz and
F is known. Since & and F are survival functions. they are assumed to
have support [0.x ). Using the technique in Chaubey and Sen (1996).

we present a smooth version of [, () = (_Im(.r) = [:'(.r) given by

[ m(-r) = ZP.&‘(I)\m){ m (/\_) (1)

k=0

|
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where {\,}>_, is a sequence of constants such that A, — x a.s. as
m — o~ and

p" _ s

pr(p) = € ‘F k= 120 (2)

Note that [/, (z) is nonnegative and infinitely differentiable. hence it
is quite smooth. It will be shown that it is strongly consistent for the

difference U = G — F, hence, a smooth estimator for (7 is proposed as
Gn(z) = Unlz) + F(z). 3)

Since, U, (z) is nonnegative. the estimator (?;r',,, preserves the stochastic
ordering condition, i.c. E;?r?(.?‘) > F(x) va . It will be shown in the
next section that it also preserves other asymptotic properties endowed
in é'm( Tk

The basic motivation for this estimator comes from the following
so-called Hille's lemma (see Feller (1965). pp. 227).

Let u(z) be a bounded continuous function defined on [0.~ ), then

the function @(z) defined by

a5 ;‘ T B
inle) = e S (1‘) ("j‘;) (4)

converges uniformly to u(z) in any finite sub-interval of [0, ), as
A— .

Chaubey and Sen (1996) showed that the above convergence holds
uniformly almost surely when we replace the bounded continuous func-

tion u by the edf or esf.

2.2 Two-Sample Problem

In this case we have to find a pair of smooth estimators Gunand Fo, .
such that G‘m__n = F'm,n. We may first smooth F ... and consider it to be

fixed in obtaining a smooth estimator of G by smoothing G . — F o

1N
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Thus the pair of smooth estimators is given by

0

" 5 I
f’mﬂ.(r) = Z}”.&‘(-r;\)}?:u.ﬂ(_—} (H))
k=0 A
and
- occd : ,l.‘ =
() Y Dh(EX)T mn(3) + Fonn(2), (6)

=
Il
o

where U, ,(z) = Gm al) - f‘ il )‘
Alternatively, if we smooth first (:'m_“. we have the following pair of

estimators,

m'n ZPL A ('m " (%) 3

;'..

Zm W)U (;) + Gal2). (8)

Asymptotically, the pairs of estimators given in equations (8) and

(7) are equivalent to the pair of those given by equations (5) and (6).

We may further consider the convex class of distributions with respect
to ordering (¢ > F

| . bt - oG (9)

for 0 < a < 1, motivated by Mukerjee (1996). We have for every
a e [0.1], F < C, < G. With respect to this class, the pair of

estimators Fa(mr] Ga(mn) is given by

P oy = B0t By, C sy (10)
and

Tty = 08X Capinings Gom). (11)
where

ch[m.n] — O'Fn -4 (1 — (.‘E)Gm
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The above pair of estimators may be used in producing a class of
smooth estimators by using them in place of the earlier pairs. The
value of a may be chosen to be n/(m I—{— n) owing to the consideration
in Mukerjee (1996), however, a thorough study on the choice of a is
warranted. The estimators of survival distributions originating from
the class ¢, = {(',.0 < a < 1} were considered in the case of uniform
stochastic ordering. In later discussions we will only consider the pair

given by equations (5) and (6).

3 The Asymptotic Properties of the Esti-
mators

We will use the notation, ||U|| = sup,cg+ |U/(z)| for any bounded func-
tion U defined on [0,0c). First, we establish the strong consistency
of the smooth estimator in one-sample case as given in the following
theorem.

Theorem 3.1. Let A, — x~ a.s. as m — ~. Then

sup |é’m(x} - G(z)|— 0 ays.as m — x
zeR*

Proo¥: In order to prove the theorem. it is enough to establish

sup |6’m(x) ~-U(z)]— Das.asm— (1)
rzeERT

where U = G' — F. This can be easily proved along the same lines as

in Chaubey and Sen (1996 )and using the strong uniform consistency of

é as established in Rojo and Ma (1996). 0
The followmg theorem glves the weak convergence of the smooth

estimator G similar to that for G obtained in Rojo (1995).

Theorem 3.2. If A — o~ and m~'\ — 0 then for G(z) > F(x)vx

V(Ghik G) % WP

Il
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where W° denotes a Brownian bridge. However, if G(z¢) = F(xo) for
some z¢ with G # F, then é'm does not converge weakly.
ProoFr: It is required to establish the following lemma in order to
prove the above theorem, which is also of independent interest as it
gives the order of closeness of the smooth estimator to the nonsmooth
estimator.

Under the conditions on the sequence {),,} given in theorem 3.1.

we have

||ém - ém|| =2 0(1"1'1_3’!4 logm) a.s. as m — ~.

Proor: We may write

" < o 4 . % :
Gn(z) - G Z (X) - Gn (X) - Gn(z) + G(z))

e e
+{zpk(x/\)(6‘ (;) - G(2))

S (") F(a:n}. @)

k=0

First, note from Chaubey and Sen (1996) that (see their equation
(3.23)) that

o]

Zpk(a:)\)[(;' L - G(z)] = O(m™"'logm) a.s. as m — x. (3)
A

k=0

For the analysis of the first term in equation we break the sum over

the regions;
={ke N:lk/X-z| < (m logm)/%}

and
JF\"F; = .\—\ ."'VJ.
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ilord
=1

where N = {1.2.3.....}. Using Lemma 3.1 of (Chaubey and Sen

(1996) we may claim that

- [k bl )
IS pr(@A)(Gim ((X) - G ((;) — Gnl) 4 G()) = o(m™). (1)

kENE

Now irom Rojo and Ma (1996) (see their equation (2.5)). we have

sup I(;_'m(.r) - Gnplr) = u(m_”z) 03
reR*

as m — ~c. hence we can write

s k L - :
| 2 pe(aA)[Gn ((;) - Gn ((I) — Gu(x)+ G(2)|

kEN;
- k i i
= | Z pk(r)‘)[(;m ([X) = (-'rm (X) = (-’Im(-r} + (f‘{"j]i
keEN;

+o(m™'?). (5) |

Now we use the celebrated Bahadur (1966) representation of quan-
tiles as in Chaubey and Sen (1996) and combine equations (1) and (5)

to claim that

sup |ém(£)—C;'(E)—C‘;'m(.r)+(}[‘r}| = O(m™>/" logm) a.s. asm — x.
reR+ A A

(6)
Using equations (2), (3) and (6) gives the result. 0

Using the above theorem we find that

sup [Wn(z) = W, (2)] = O(m~"*log m)
reR+
where

Walz) = \/E((';,,!(,r) - G(r))

and

Win(z) = Vim(Gulz) — G(2)).
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Now we use Rojo’s Theorem 2.1 for the weak convergence of W', ()
to prove the desired result. The second part also follows from the same
theorem owing to the almost sure equivalence of W (r) and Wi ().
The asymptotic results of Rojo (1995) and Rojo and Ma (1996) extend
to the smooth estimators in the two sample case also. We merely state
them without proof.

Theorem 3.3. Let m™ = min(m.n) and {A,+} be a sequence of
constants such that A,. — x as m™ — x. then almost surely.

sup |(_~;'m_ﬂ(‘r) - G(r)] — 0.
reR+

and

sup |Fpn(e) = Flx)| = 0.
reRt

Theorem 3.4. Let {),, .} be a sequence of constants such that A, , —

56, M A — 0, and n ' X — Oasm.n — x. then for the case

G(x) > F(x)ve

Sl e it

and

Vi(Fon = FPaw®,

If G(xo) = F(xo) for some xy with G # F. then (‘r'n-,‘,-, and 1"",,{_,, do
not converge weakly.
Remark 3.1 Chaubev and Sen (1996) found the choice of A, =
m/max(X;.X,..... X,,) to be appropriate for the case when we as-
sume F(.X) < x. in the unordered case. This value of A can still be

used for the one-sample case. For the two-sample case. we could use

Amn = min(An.A,). This value is appropriate asvmptoticallyv. how-
ever. we have found that A, = m/max(X,. X,..... X,,) should be used
for smoothing G and X, = nfmax(};.Y;.....Y;) should be used for

smoothing F,, ,
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Remark 3.2 The smoothing technique nsed here has been extended to
the case of random censoring (see (‘hanbey and Sen (1993)). It can be
similarlv adapted to the stochastic orderine case using the setup treated
in Rojo (1995). The asvmptotic results disenssed in Rojo (1995) extend
to this case also when the supports ol the underlving distributions as

well as the censoring distribution are infinite.

4 Numerical Illustrations

The following table gives the life times of samples of electrical insulating
material subject to a constant stress at 32 Kv and 34 Kv obtained
from Nelson (1990. C'hapter 3. pp. 123-129). The data has been fitted
with Weibull distribution with shape parameter a = 1/28.94 and scale
parameter .3 = .361 for 32 Kv sample and that with o = 1/11.22 and
4 = .771 for 34 Kv sample. Rojo (1995) points out that the Weibull
model used to fit the data on 34 kilovolts does not satisfv the stochastic
ordering constraint for the survival functions (¢ and F. where these are
respectively the survival distributions for 32 Kv and 34 Kv samples.
Physical considerations would require to assume that GG > F. Hence.
considering F as a fixed Weibull. he fitted the estimator (i’m to the
data in Table 1 for 32kV sample. Figure 1 demonstrates the use of
smooth estimation in relation to the Rojo’s unsmoothed estimator. In
this case m = 15 and max(.Xj..... X,,) = 215.1. thus the value of A
chosen for smoothing in this case is taken to be 15/215.1 = .069735.
(‘loseness of the smooth and nonsmooth graphs is appealing. Figure
2 gives the smooth estimator of the survival distribution for the 34
kv sample under the stochastic ordering constraint and Figure 3 again
demonstrates the use of smooth estimation in relation te .the Rojo’s
unsmoothed estimator in the two-sample case. The value of A chosen for

smoothing the survival distribution for the 34 Kv sample. as indicated
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in remark 3.2, is taken to be 19/72.89 = .260667. whereas that for
getting the smooth estimator in the case of 32 Kv sample is .069735
as it was in the one-sample case. The similarity of the graphs between
Figure 1 and Figure 3 basically point out to the superb fit of the Weibull
model to the 34 Kv data. We have not shown here the graphs of the

other pairs of estimators, but they are qualitatively similar.

Table 1: Ordered times until failure

32Kv 027 040 069 079 275 319 9.3

(m=15) 13.95 1593 27.80 53.4 8285 39.29 100.58
215.1

34Kv 018 078 096 131 278 3.

fn=19) "~ 4.6T 4.85'° 650 745 801 ' 82
31.75 32.52 33.91..36.71 72.89

6 4.15
T 12.06

. a8
;- +  Rojp
..... Smooth
Fbar
g ®
o
a
2 4
&
~
[=]
o it
q- TS e k.‘.‘.“ --------
o o
T ! I : :
D - = - 200 250
Time of Failure

Figure 1: Stochastic order with respect to Weibull (.0871,.771)
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Sunvival Probabiity

Time of Failure

Figure 2: Survival Distribution for 34 Kv sample
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Figure 3: Survival Distribution for 32 Kv sample
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