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We obtain the maximum likelihood estimators of two multinomial probability vectors under the constraint that they are likelihood
ratio ordered. We extend this estimation approach to the case of two univariate distributions and show strong consistency of the
estimators. We also derive and study the asymptotic distribution of the likelihood ratio statistic for testing the equality of two discrete
probability distributions against the alternative that one distribution is greater than the other in the likelihood ratio ordering sense.
Finally, we examine a data set pertaining to average daily insulin dose from the Boston Collaborative Drug Surveillance Program
and compare our testing procedure to testing procedures for other stochastic orderings.
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1. INTRODUCTION

Stochastic ordering of distributions is an important con-
cept in the theory of statistical inference. Many different types
of stochastic ordering have been defined in the literature,
and in fact a comprehensive volume from Academic Press
on this topic (Shaked, Shanthikumar, and collaborators
1994) is now available.

One of the earliest definitions of stochastic ordering was
given by Lehmann (1955): A random variable X with dis-
tribution function F is said to be stochastically greater than
a random variable Y with distribution function G if

(1)

This is callecsl‘(usual) stochastic ordering and is typically de-
noted by X > Y.

In some cases a pair of distributions may satisfy a stronger
condition called likelihood ratio ordering. If distributions F
and G possess densities (or probability mass functions) f
and g, then the condition required for likelihood ratio or-
dering is given by

J(x)
g(x)

F(x) = G(x) for every x.

is nondecreasing in x. (2)
LR

This ordering is denoted by X > Y and has the interpre-
tation that (2) holds if and only if for every a < b, the con-
ditional distribution of X given X € [a, b] is stochastically
greater than that of Y given Y € [a, b]. Keilson and Sumita
(1982) called this ordering local uniform ordering and dis-
cussed many of its properties. They also gave many examples
of stochastic processes where the underlying distributions
are likelihood ratio ordered. Ross (1983) and Shanthikumar
and Yao (1991) have observed the usefulness of this ordering
in some stochastic scheduling, closed queuf:ing network, and
reliability problems. It is known that X > Y implies that
F(x)/G(x) is nondecreasing in x. This latter condition de-
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fines uniform stochastic ordering (or hazard rate ordering),
and this in turn implies stochastic ordering. LR

Although Ross (51983, p. 268) has shown that X > Y im-
plies that 2X + ¥ > X + 2Y for independent random vari-
ables X and Y, thits conclusion will not be implied by the
lesser condition X > Y. Shanthikumar and Yao (1991) have
generalized this result and have given some bivariate func-
tional characterizations of these stochastic order relations.
In particular, they have shown that X > Y if and only if
Eg(X,Y)= Eg(Y,X)forall g € §), = {g(x, y): g(x, y)
> g(y, x), for all x = y}. (Some other important references
on likelihood ratio ordering are Karlin and Rubin 1956,
Lehmann 1955, and Whitt 1980.)

There has been a considerable amount of work done on
inference problems concerning (usual) stochastic ordering.
Brunk, Frank, Hanson, and Hogg (1966) obtained non-
parametric maximum likelihood estimates (MLE’s) of two
stochastically ordered distribution functions and studied their
properties. Testing procedures based on MLE’s of two sto-
chastically ordered distribution functions have been discussed
by Robertson and Wright (1981), Lee and Wolfe (1976),
Franck (1984), and Dykstra, Madsen, and Fairbanks (1983).
Of course, the literature contains several distribution-free
tests for testing the equality of distributions against stochast-
ically ordered alternatives.

Dykstra, Kochar, and Robertson (1991 ) obtained MLE’s
of the survival functions of k distributions under uniform
stochastic ordering (i.e., with ordered hazard rates). They
also derived the asymptotic null distribution of the likelihood
ratio statistic for testing the equality of distributions against
the alternative that their hazard rates are uniformly sto-
chastically ordered in a discrete setting. Park (1992) studied
the likelihood ratio test for testing uniform stochastic or-
dering as a null hypothesis.

It is surprising that very little attention has been given to
the problem of developing inference procedures for likeli-
hood ratio—ordered distributions. But because this ordering
has many important theoretical implications (see Sec. 6 for
the relevance of this ordering in comparing nonhomogeneous
Poisson processes), we feel that it is a topic worthy of ad-
ditional study. We are not aware of any tests in the literature
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specifically designed for testing the equality of two probability
distributions against the alternative of likelihood ratio or-
dering. In this article we consider this testing problem for
the discrete case.

We assume that a random sample of size m is taken from
a multinomial distribution with probability vector p = (p,

., Px) and denote the corresponding vector of observed
frequencies by m = (m,, . . ., m;). Similarly, we letn = (n,,
..., 1) be the observed frequencies of an independent ran-
dom sample of size n from another multinomial distribution
with probability vectorq = (g, ..., @) (m=m + - - -
+mgandn=n, + - - - + n;). We derive the nonparametric
MLE’s of the probability vectors p and q under the hy-
potheses

Hy: p=q (3)
and
LR
H: p>4q (4)
(i.e., p;/q; is nondecreasing in i, for i = 1, ..., k,) and use

these estimates to construct a likelihood ratio test.

These MLE’s are obtained in Section 2 and are derived
in the discrete setting. But they provide generalized MLE’s,
in the sense of Kiefer and Wolfowitz (1956), under the as-
sumption that the family of interest is the collection of all
pairs of univariate distributions. In Section 3 these estimates
are shown to be strongly consistent. This result is particularly
interesting, because the MLE’s under the assumption of uni-
form stochastic ordering are not consistent (cf. Rojo and
Samaniego 1991).

In Section 4 we derive the asymptotic distribution of the
likelihood ratio statistic for testing H,, against H, in the dis-
crete setting. The asymptotic null distribution is shown to
be of the chi-bar-squared type. In Section 5 we illustrate
these estimation and testing procedures using a data set con-
cerning the mean daily dose of insulin for patients with and
without hypoglycemia. In Section 6 we discuss how the pro-
cedures developed in this article can be used to make infer-
ences about two nonhomogeneous Poisson processes.

2. MAXIMUM LIKELIHOOD ESTIMATION
In this section we obtain the MLE’s of p and q under H,

and H;. We begin by expressing the likelihood function of
(p, q) as

k
Lo [ p"a.

i=1

We reparameterize by letting

0, = mp;/(mp; + ng;), ¢; =mp;, + ng;, (5)

to obtain

pi = b0i¢;/m, g; = ¢:(1 —6;)/n, (6)

fori=1,...,k.
The basic restrictions on p and q are

(a) p;=20,¢q,=0,fori=1,...,k,and
(b) Thkip=32kig=1
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It is easy to see that (a) and (b) are equivalent to
(¢c) 0<0,<1,¢;=0,fori=1,...,k,
(d) X, ¢; =m+n, and
(e) 2K 6;¢; = m.

It is straightforward to show that under the null hypothesis
H,, the MLE’s of p; = ¢; are given by

p? =4q? = (m; +n)/(m+n). (7)

Therefore, the MLE’s, 89 and ¢?, of §; and ¢; are given by
89 = mp? /(mp? + ng?) = m/(m+ n)
and
¢? = mp? + nql =m; +n;,

fori=1,...,k.

We note that the unconstrained MLE of §; is given by
=m;/(m; + n;). It is easily shown that the MLE of # under
H, is equivalent to the least squares projection of the vector
fontothe cone @ = {(f,,...,0:);0,=0,=++- =8} of
constant vectors with weights w = (wy, ..., wy), where w;
= m; + n;. We express this fact by writing

8° = E,(8]€). (8)
We next consider the problem of finding the MLE’s of the
parameters under H,. Observe that H, will hold if and only
if (c), (d), and (e) are true together with the condition that
the 6;’s are nondecreasing inifori=1,..., k.
Rewriting L in terms of the #’s and ¢’s, we obtain

k 1 mi {1 n;
L« ,I}. (; 9i¢i) (; o (1 — 0:’)) 9

1\"(1\" f ad
= | — - 67i(1 — 9, mitng 10
() () Weoma —ap T or. 10)
Thus the likelihood function factors into two parts, one in-
volving only §;’s and the other only ¢,’s. First, consider max-
imizing L subject to (¢), (d), and nondecreasing §,’s. The
first factor is a bioassay problem as discussed by Robertson,
Wright, and Dykstra (1988, ex 1.5). The second factor is a
straightforward multinomial MLE problem. The maximums
are achieved at

¢f=m,~+n,—, i=l,... (11)

and

* = (07,...,00), (12)

the isotonic regression of the unconstrained MLE, 0= (8,
..., 6,) with weights w = (wy, ..., wy) onto the cone J
={(6,...,0); 0, <80, < ... <0} of nondecreasing
vectors, where w; = m; + n; and 8, = m;/(m; + n;). In our
earlier notation, we can write 8* = E,(8|7).

Moreover,

M
=3

k k
T 07 eF =3 EuB1T)i(m; + ;) =

i=1 i=1

Wy =m,
1

using Theorem 1.3.3 of Robertson et al. (1988), so that (e)
is also satisfied. Thus 6* and ¢* are the MLE’s of # and ¢
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under H,. Observe that the MLE of ¢ is the same under
both Hy and H;. Using (7), (11), and (12), we obtain the
MLE’s of p and q under H,, as reported in the following
theorem.

Theorem 2.1. If (m; + n;) > 0 i=1, , k, then the
MLE of (p, q) subject to H,: p > qis glven by (p*, q*),

where
* m; + n; m
j = Emn_j
o = (o el )

* m,-+n,— n
i = Emn—‘>4
o = (e )

fori=1,...,k,where A = {(0;,...,0);0,=20,= - -
> 6, } is the cone of nonincreasing vectors.

The similarities between (p*, q*) and the MLE of (p, q)
under (usual) stochastic order P g q(Z, D < Z, 1 4,
j=1,. — 1, 2% p; = X% g;) is rather surprising. In par-
ticular, Robertson et al. (1988, pp. 252-253) showed that
these MLE’s are given by

(13)

and

(14)

- mp + nq
= pi Byl —————= |7 15
Di = D ((m+n)p ),- (15)
and
_ . mp + nq
i = 4 ~ ')4 . 16
4 =4 q((m+n)q )i (16)

This similarity is even more apparent when the respective
MLE’s are expressed as

* _ o m; + n; m
Di pl( m; )Em+n(m +n 'j)l (17)
and
_ . [m+n m -t
Di = pi[ m Em+n(m +n 'ﬂ)l] (18)

(with similar expressions for ¢ and §;).

For the MLE of (p, q) under the restriction that p is greater
than q according to uniform stochastic ordering ( hazard rate
ordering), see the work of Dykstra et al. (1991).

3. CONSISTENCY

If k is held fixed while letting m, n = oo, then it is easy
to show that pf — p;, and q7 — gq; if p;/q; 7 in i by using
properties of isotonic regression. If one interprets maximum
likelihood in the generalized sense (Kiefer and Wolfowitz
1956), which puts probability only on observed values, then
the MLE’s given in Section 2 yield MLE’s when the family
of interest consists of all pairs of univariate distributions that
are likelihood ratio ordered. By this we mean that there exist
probability density functions fand g with respect to a dom-
inating measure u such that f(x)/g(x) » in x. Thus many
pairs of continuous and mixed distributions will be in our
family. A natural question to ask is whether these MLE’s
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are consistent in the sense that the associated cdf’s converge
pointwise to the true cdf’s when m, n = oo and the likelihood
ratio order holds.

This question is especially pertinent in light of the fact
that the MLE’s under uniform stochastic ordering (which is
implied by likelihood ratio ordering) are not consistent, as
was shown in a special case by Rojo and Samaniego (1991).
(But MLE’s under usual stochastic ordering are at least
weakly consistent [Dykstra 1982].) Because the condition
of uniform stochastic order (¥/G ~) is similar in concept
to likelihood ratio order (f/g 7 ), it is difficult to anticipate
the answer. We now show that the answer is in the
affirmative.

We let F(G) denote the cdf corresponding to the density
f(g) and assume that we have independent random samples
of size m and n. We initially assume that n/m —= X\, (0 < A
< o). We let Fm,,,( +) denote the likelihood ratio-ordered
MLE of F derived in Section 2 and let F,,(-) denote the
usual empirical cdf for the first sample. (We consider only
F,,,,,,( +); similar results hold for Gm,,,( ).)

We fix w (arbitrarily in a set of probability 1) such that
Fo(x,w) = F(x) and G,(x, o) = G(x) uniformly in x. It
will suffice to show for a fixed ¢ > 0 and ¢, there exists
m(e, w) and n(e, w) such that

Iﬁm,n(t, W) - Fm(t’ W)I <e

for m=m(e, w), n=n(e w)

(we henceforth suppress the w).

We let 51, 53, . . - , Sk(n,m) denote the collection of distinct
values from the combined random samples and assume that
a, as, . . ., a, denote the upper end points of the level sets
of Egqo[m/(m + n)| 7] (see Robertson et al. 1988, chap. 2,
for details). The level sets are those subsets of the s; where
the least squares projection has constant value. Of course,
v, the number of distinct level sets, will be a random variable
(as will the g; ) depending on the random samples. We assume
thata,_; <t <a,(and gy = —0).

Then we can write

Fpn(2)
m; +n; m

- i;?-st m Em+n(m+“lj)i
_ 1'_ Zﬂj_l<3,‘5aj m;
- m =zl j—l<zsisaj (mi * ni)[z"i‘l<si5ai (mi + ni)]

+ Za,_1<s,s! (mi + ni). Za,_l<s,vsa, m;

Za,_,<s,«st m; Za,_,<s,-sa, (mi + ni)

X 1 > omy (19)
- m(ar—l) + A(F (t) m(ar—l)) (20)
= Fu(t) = (1 = AY(F(t) = Fp(a,-1)), (21)

where A is the last entry in brackets.
By the minimum lower sets algorithm (Robertson et al.
1988, p. 24),0 < 4 < 1 so that F,,, ,(¢) < F,,,(¢). Moreover,
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because the empirical c¢df’s converge uniformly to the true
cdf’s, we can say there exist positive integers ny and m, such
that

F(1) — F(a,) + NG(1) — G(a,-1)]

A_

F(1) — Fla,)
F(a,)— F(a,,)
. 22
Fa) — Fla1) + NG(a) - G(g, )] l (22)

is less than ¢ if F(¢) — F(a,-;) = ¢/2 (because then the
denominator is bounded away from zero) for n = nyand m
=M.

Now

is nondecreasing

flg

- is nondecreasing,
S+ g &

from which it follows that

F(a,) — F(1) _ _F(a) - F(1) + NG(a) ~ G()]
F(t) — F(a,-)  F(t) = F(a-1) + NG(1) — G(a,-1)]

or, equivalently,

E(t) — F(a,-)) + NG(?) — G(ar1)]

1 <
F(1) - F(a,-1)
. F(ar) — F(ar—l)
F(ar) - F(ar-l) + A[G(d,) - G(ar—l)] )
Thus
A>1-—¢ ifn=ny,m=my

and F(t) — F(a,-,) = ¢/2.

Finally, if we select m, = my such that

|(Fn(t) = Fn(@)) = (F(0) = F(a-))| <35
ifmz=m,
then it follows that
lﬁm,n(t) - Fm(t)l <e
for m=m;,n=ny, by(21). (23)

Careful scrutiny will reveal that this result also holds when
X = 0 or co. Now suppose that m — oo arbitrarily. Then it
suffices to show that every subsequence (m1;, 7, )=, contains
a sub-subsequence that converges correctly. But it is always
possible to choose a sub-subsequence of (., m)i; whose
ratio converges (possibly to 0 or o), so that the general
result holds. It easily follows that F, (+) converges uniformly
to F(-) a.s., as long as m = oo (regardless of the behavior
of ). Additional work will show that the convergence is of
order m~'/? which is the best that we could hope for.

4. THE LIKELIHOOD RATIO TEST

We now consider the problem of testing the null hypothesis
H, against the alternative H,. In our asymptotic theory, k,
the number of support points, is fixed. We initially assume
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that the sample sizes n and m increase to oo in such a way
that n/m = A\, 0 <X < 1,and (m + n)/*(n/m — x) = 0.
The likelihood ratio statistic is

_ SuPpaen L((p, @) _ L(p% q%)
supp.aex, L((p, q)) ~ L(p*, q*)

L\ 1} . A .
() () Tt e -0y e oty

GTEY
UONE

because ¢¢ = ¢ . Our test rejects Hy for large values of T
= —2 In ¥; that is, for large values of

K03y (1 — 07 ) Ty (7)™

(24)

k
T=23 {mlnd + nln(l —87)
i=1

— mn 69 — nin(1 —0%)}. (25)
If we expand In 87 and In 6 about §; and expand In(1
— 67 )and In(1 — #?) about (1 — ¢;) and use properties of
isotonic regression, then we find that the linear terms in the
expansion drop out. On simplification, T reduces to

k
T= z[(o—o" ("’2‘+5’i)
i=1 6

~ (b, - of )2(% + %)} . (26)

] ]
where

max { | 8; —aila [6; — (1 —ai)l} < |69 "91" (27)

and

max {|e; — Bil, 1vi — (1 = 9i)|} < |6f - 8. (28)
When we assume that Hy is true, the right sides of (27) and
(28) go to zero, which implies that T is asymptotically

equivalent (=) to

k
> [B; — 09y — (B — 67 Y Nom; + n) ———

i=1

m; +n, m; + n; m,
m; n;
— 26,69 + 6% — 62 + 28,67

~ 2 (67 - 67

i=1
X (m; +n)(\+ DA

k k
=3 (6 — Y (m + n) A+ 1/A (29)

i=1 i=1
(because SX, 6,0%(m; + n;) = T, 87 87(m; + n;) and
Sk 8,07 (m; +n;)=2k,0%2(m; + n;)). Expression (29)
can be written as
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>

i

[EL(817); — Ew(81@),1%(m; + n,)(A + 1)%/X
1

L)

k
~ Z [Ew(élj)l - Ew(al@)tlz
i=1

X (m+ n)p;(A+ 1)/

e s)l)

sl

X pi(A+ 1)%/\

But under our earlier assumptions,

m b 1 p
m+n 1+
Vm+n - —L*
no. A
m+n l+)\q
——1 = 0
0 4 P
MVN (), L+ A , (30)
0 0 A5
1+a
where
Zp, = (05 — piD)), l<i,j<k,
and
Eq = (611 - qiqj)a l < I’JS k’

are standard multinomial covariance matrices (where d;; is
the Kronecker delta; i.e., 6; = O when i # jand §; = 1 if
i=j).

Straightforward but tedious application of the delta
method (cf. Serfling 1980) will show that if Hj, is true, then

Vim + n(i) - TJITX) 5 MVN(O0, A),

where
1
——1 -1 -1
D
1
—1 p——l -1
A 2
A= .(31
(1+2x)? . (3D
-1
1
-1 -1 —=1
Pk
Upon observing that this is the distribution of
(XI_X’XZ_X’-"’Xk_X)’ (32)
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where X,, ..., Xx are independent N(0, A/((1 + X)?p;)),
1 < i < k, random variables with X = 2%, p, X;, we may
use continuity properties (both in the argument and the
weights) of a least squares projection to say that T is asymp-
totically distributed as

k
> [E(X —X|7) = E(X—X[€)]’pi (A + 1)?/X

i=1

x>

i

[E,(X17): — Ep(X|C)[P[var(X)]™'. (33) .
1

But the exact distribution of (33), as obtained by Rob-
ertson et al. (1988, pp. 68-74), is a chi-bar-squared distri-
bution, which is a mixture of chi-squared distributions, mixed
over the degrees of freedom. Note that this distribution is
free of A. Additional work will show that the same asymptotic
distribution holds under H, as long as both m and n go to
infinity. We spare the reader the unpleasant details. A precise
statement of the asymptotic distribution of 7 is given in the
following theorem.

Theorem 3.1. Ifp, =¢q;>0,i=1,...,k,and m and
n go to oo, then for all £ > 0,

k
lim pr[T=1]= X P(l,k; p)pr(Xf, =1)

m,n-»oo =1

(34)

where X? denotes a chi-squared random variable with » de-
grees of freedom and P(/, k; p) is the probability that
E,(X|J) takes on / distinct values, where X = (X, ..., Xi)
consists of independent random variables and X; is

We recommend that the quantity pr[ 7T = ¢] be approxi-
mated by

k
> P(L, k; pYpr(xi = 1), (35)

=1

where p; = (m; + n;)/(m + n). This expression has the same
asymptotic distribution as T and generally provides a very
good approximation to the distribution of T'. Expressions
for P(/, k; p) have been given by Robertson et al. (1988,
pp. 77-79) for k up to 5. Numerical simulations (or some
other approximation, such as those discussed in chapter III
of Robertson et al. 1988) are typically needed to approximate
P(l, k;p)for k> 5.

If the p;’s are of roughly the same magnitude (as evidenced
by the values of p), then the equal weights P(/, k) give an
extremely robust approximation to the distribution of T'.
This approximation is remarkably good, as evidenced by the
example in Section 5. Robertson and Wright (1983) rec-
ommended the equal weights approximation as long as
sup; ; p;/p; < 4. Robertson et al. (1988, chap. 2) gave a re-
cursive formula (as well as tables for k£ up to 20 in appendix,
table A.10) for these P(/, k). Critical points for the accom-
panying distribution were also given in tables at the back of
that book. A Fortran program for implementing a recom-
mended pattern approximation was given by Pillers, Rob-
ertson, and Wright (1984).
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Although the asymptotic least favorable distribution of T’
under Hj is given by

sup lim pr[7 = 1]

p=q nm—>wx
k= 1\ (1)
=2(,_1)(5) pr(Xti= 1), (36)

this tends to be a very conservative bound and is not rec-
ommended except as a crude guideline.

5. EXAMPLE

To illustrate the estimation and testing procedures dis-
cussed in earlier sections, here we examine a data set dis-
cussed in a report from the Boston Collaborative Drug Sur-
veillance Program (1974). The data set consists of observed
values for the mean daily insulin dose from 80 subjects cat-
egorized as ‘“‘hypoglycemia present” and 245 subjects from
the population “hypoglycemia absent.” The measurements
are grouped into five ordered categories and are shown in
Table 1.

One would expect that hypoglycemia (low blood sugar)
would occur when large amounts of glucose are metabolized
and hence would be consistent with higher leﬁ’;?ls of insulin
dosage. This would suggest the hypothesis F = G.
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The computed value of the likelihood ratio statistic T
= —2 In A is 9.703. We computed the estimated chi-bar-
squared weights P(/, k; p) from the formulas of Robertson
et al. (1988, pp. 77-79). These weights are given by P(35, 5;
5) = .010, P(4, 5; p) = .096, P(3, 5; p) = .308, P(2, 5; p)
= 404, and P(1, 5; p) = .182. Despite the variability in D,
(sup; bil p‘,- = 2.32), these weights are remarkably similar
to the equal weights P(/, k) tabled by Robertson et al.: (P(5,
5) =.0081, P(4,5) = .083, P(3,5) = .292, P(2,5) = 417,
and P(1, 5) = .200). The p values are .006 for the first set
of weights and .005 for the P(/, k) approximation. Clearly
there is strong evidence supporting the likelihood ratio or-
dering hypothesis over equality of distributions.

For comparison sake, we also computed the MLE’s and
likelihood ratio statistics for testing equality of distributions
versus uniform stochastic ordering (implied by likelihood
ratio ordering; see Dykstra et al. 1991) as well as the MLE’s
and likelihood ratio statistics for stochastic ordering (implied
by uniform stochastic ordering; see Robertson and Wright
1981). Finally, we ran the standard likelihood ratio test for
testing equality of distributions against all alternatives.

Rather surprisingly, the MLE’s under uniform stochastic
ordering are identical to the MLE’s for likelihood ratio or-
dering and hence give the same test statistic value of 9.703.
Because there are only two populations, the asymptotic chi-
bar-squared weights can be expressed as binomial (4, 1/2)

Table 1. Mean Daily Insulin Dose and Maximum Likelihood Estimates Under Stochastic Orderings

Insulin

NHWN =

level 1 2 3 4 5
<.25 .25-49 .50-.74 .75-.99 =1.0
Pop. | (F}—Hypoglycemia present 4 21 28 15 12
Pop. Il (G)—Hypoglycemia absent 40 74 59 26 46
MLE's F = G* likelihood ratio order
_m N _m+tn j = T __m
hi m G n Z m+n " m+n, 6; pi qa o m+n
.050 163 135 .091 .091 .050 .163 .246
.262 302 .292 221 221 .262 .302 .246
.350 241 .268 .322 .296 322 .250 .246
.188 106 126 .366 .296 152 118 .246
.150 .188 178 .207 .296 215 167 .246
ust st
MLESF=G°F=G*
w . FEG
F = G uniform stochastic order stochastic order
- Ny—dy s Ny—dy Nyt ny—dy—dy
0y = 0 = 0? = 4 4
ny Ny Ny + Ny Oy O B (o Bi 4
1 .950 .837 .865 .950 .837 .050 163 .048 .165
2 724 .639 662 724 639 .262 .302 .254 .306
3 401 .550 532 532 532 322 .250 .338 .244
4 444 .639 .586 .586 .586 152 118 181 107
5 0 0 0 0 0 .215 167 178 178

* p/q; increasing in i
L] £

® S pf< gjincreasing in i
e

5 5
cXp=Zqforali

it i
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probabilities giving a p value of .012. Moreover, this implies
that the likelihood ratio statistic for testing likelihood ratio
order against uniform stochastic order is zero and hence pro-
vides no support for choosing (less restrictive) uniform sto-
chastic order over (more restrictive) likelihood ratio order.

The MLE’s under stochastic order (st) and uniform sto-
chastic order (ust) are also given in Table 1. The likelihood
ratio statistic value for testing equality versus stochastic order
is 12.742, and the asymptotic chi-bar-squared weights are
expressible from the likelihood ratio ordering weights as Py (/,
k;p)=Pr(k+1 -1 k;p),l=1,...,k. Inthis case the
p values are again .005 for the equal weights approximation
(P(1, k)) and .006 when p is estimated by p. The conservative
binomial bound (36 ) gives a p value of .012 for the likelihood
ratio ordering case. A least favorable bound gives .009 for
stochastic ordering. The likelihood ratio test statistic value
for testing equality of distributions against all alternatives is
13.268, which gives a p value of .010 from the chi-squared
(4) distribution.

6. POISSON PROCESSES

The methods developed in this article can also be used to
compare trends in Poisson processes (cf. Boyett and Saw
1980; Lee 1982, 1982). Let N,(¢) and N,(¢) be two nonho-
mogeneous Poisson processes with mean value functions
A;(t)and A,(¢) and let \;(t) = d A;(t)/dt denote the intensity
function corresponding to N;(¢);i =1, 2.

Suppose that we observe these two processes up to a pre-
determined time 7, and thatwelet0 <t | <2 <...lq0)
< Ty, 1 =1, 2 be the observed times of occurrence for these
two processes. Then it is well known that conditional on
N;(Ty) = n(i), the observation times ¢, #;, ... t,) have
the same distribution as the order statistics of a random sam-
ple of size n(i) from a distribution with density, f;(z) = X\;(?)/
A (Ty), i =1, 2. Because A,/ ), is proportional to £,/ f;, the
procedures developed here can be adapted to make inferences
about A,/ X, based on the foregoing data when collected in
group form. Specifically, we can estimate the intensity func-
tions (and thus the mean functions) subject to the restriction
that their ratio is monotone in ¢ using the methods developed
here. We can also test the null hypothesis that this ratio is a
constant against the alternative that it is monotone in ¢, using
an adapted version of our likelihood ratio test in Section 4.
Obviously, the resulting test will be conditional on N;(T)
=n(),i=1,2.

7. CONCLUSION

It is shown in this article that MLE’s for distributions that
are likelihood ratio ordered can be obtained in a form that
is similar to MLE’s under (usual) stochastic ordering con-
straints. These MLE’s can be neatly characterized in terms
of least squares projections onto isotonic cones. It is also
shown that these MLE’s are strongly consistent in a general
setting and that they converge at the rate n='/2,

The asymptotic distribution of the likelihood ratio statistic
for testing equality of distributions against the alternative

Journal of the American Statistical Association, September 1995

that the distributions are likelihood ratio ordered is also de-
rived and shown to be of the chi-bar-squared type. Moreover,
this chi-bar-squared distribution involves the same weighting
coefficients (reversed in order) as the likelihood ratio test for
(usual ) stochastic order.

[Received September 1993. Revised December 1994.]
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