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ABSTRACT

We consider the competing risks problem with two risks and when the data are grouped

or discrete. We firstly obtain nonparametric maximum likelihood estimates of the sub-

survival functions corresponding to the two risks under the restriction that they are uni-

formly ordered and then use them to derive the likelihood ratio statistic for testing the null

hypothesis of equality of the two sub-survival functions against ordered alternatives. The

asymptotic null distribution of the test statistic is seen to be of the chi-bar square (χ̄2)

type. A simulation study has been performed to compare the power of the new test with

an existing one.

AMS 1980 Subject Classification: Primary: 62G10, 62G05; Secondary: 62E20, 62N06

Some key words and phrases: Isotonic regression, cause specific hazard rates, competing

risks, two-sample problem.

1



1 Introduction

In the standard competing risks model, a unit or subject is exposed to several risks at the

same time, but the actual failure (or death) is attributed to exactly one cause. In this paper

we assume that there are only two risks. Let the notional (or latent) lifetimes of the unit

under these two risks be denoted by X and Y . In general, X and Y are dependent. We

only observe (T, δ), where T = min(X, Y ) is called the time of failure and δ = 2 − I(X≤Y )

is the cause of failure. Here IA is the indicator function of the event A. We assume that

pr(X = Y ) = 0. Thus, the observed data are in the form of (T, δ) for each item.

On the basis of the competing risks data it is often of interest to know whether the two

risks are equal or one risk is greater than the other. Such comparisons can be made in terms

of sub-survival functions,

Si(t) = pr[T ≥ t, δ = i],

or in terms of cumulative incidence (sub- distribution) functions,

Fi(t) = pr[T ≤ t, δ = i],

corresponding to each cause i. Note that S1(t) + S2(t) = ST (t) and F1(t) + F2(t) = FT (t)

where ST and FT are the survival function and the distribution function of T , respectively.

Another approach would be to compare their cause specific hazard rates (CSHR). The

cause specific hazard rate corresponding to the ith cause is defined by

hi(t) = lim
∆t→0

1
∆t

pr[t ≤ T < t + ∆t, δ = i|T ≥ t]

i = 1, 2. If T is discrete, the ith cause specific hazard rate is given by pr(T = t, δ = i|T ≥ t).

In either case the overall hazard rate for time to failure is given by h(t) = h1(t) + h2(t). In

models where the various causes of failure are independent, hi(t) reduces to the (ordinary)

hazard rate corresponding to the marginal distribution of failure from the ith cause. In the

continuous case the sub-survival functions and the cumulative incidence functions can be
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expressed in terms of the cause specific hazard rates by the relations,

Si(t) =
∫ ∞

t
hi(u)ST (u) du, Fi(t) =

∫ t

0
hi(u)ST (u) du, (1.1)

for i = 1, 2. Similar relations can be established for the discrete case.

In this paper we consider the problem of testing the null hypothesis,

H0 : S1(t) = S2(t) for t ≥ 0, (1.2)

against the alternative,

H1 : S1(t) ≤ S2(t), for t ≥ 0, (1.3)

and with strict inequality for some t.

Note that (1.3) can be equivalently expressed as

pr[δ = 1|T ≥ t] ≤ pr[δ = 2|T ≥ t] for t ≥ 0,

and with strict inequality for some t. In this form it has the interpretation that given that

a unit has survived up to time t, the conditional probability of its failing in the future from

cause 2 is uniformly greater than that from cause 1.

Also note that H0 is equivalent to H ′
0 : h1(t) = h2(t) for all t as well as to H ′′

0 : F1(t) =

F2(t) for all t. H1 is implied by the more stringent alternative

HA : h1(t) ≤ h2(t) for t ≥ 0, (1.4)

with strict inequality for some t.

Caution should be exercised in the interpretation of sub- survival functions. Unlike in

the case of ordinary two-sample problem, H1 may not imply that the failures from cause 1

occur earlier than those from cause 2.

Several tests are available in the literature for testing the equality of competing risks and

they have been referenced in Aly, Kochar & McKeague (1994) and in the review paper by

Kochar (1995). In the case of continuous random variables, Deshpandé (1990), Aly, Kochar
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and McKeague (1994), Deshpandé and Karia (1995), and Sun and Tiwari (1998) among

others considered the problem of testing the null hypothesis H0 against the alternatives HA

and

H
′
A : F1(t) ≤ F2(t), t ≥ 0 , (1.5)

and with strict inequality for some t. The only test designed specifically for the problem of

testing H0 against H1, that we are aware of, is by Carriere and Kochar (2000). Their test

is distribution-free and is suitable when the random variables are of continuous type.

Note that H
′
A is also implied by HA, but, in general, H1 and H

′
A are not equivalent. It

is plausible that in some cases the cumulative incidence functions cross each other but their

sub-survival functions are ordered and vice versa.

In many practical problems, the data collected is in the form of groups or intervals. For

this kind of data, Dykstra, Kochar and Robertson (1995a) obtained the nonparametric max-

imum likelihood estimates (MLEs) of the cause specific hazard rates under the alternative

that they are ordered. They used these estimators to derive the likelihood ratio statistic for

testing the null hypothesis of the equality of the cause specific hazard rates against ordered

alternative of the type HA.

In this paper we assume a discrete time framework. In Section 2 we obtain maximum

likelihood estimators of the sub-survival functions S1 and S2 under H0 as well as under H1.

In Section 3 we derive the likelihood ratio test for testing H0 versus H1−H0 and obtain its

asymptotic null distribution. We also consider testing H1 as a null hypotheses versus H2−H1

where H2 imposes no constraints on S1 and S2 and obtain the least favorable configuration

corresponding to this case. Finally, in the last section we perform some simulation studies

to compare the power of our test with that of Dykstra, Kochar and Robertson (1995a) for

alternatives belonging to H1.
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2 Maximum Likelihood Estimation

Suppose that we have n individuals exposed to two risks and assume the times and causes

of failure represent a random sample on (T, δ). We make no assumptions about the inde-

pendence of notional lifetimes associated with the two risks.

In this section we obtain nonparametric maximum likelihood estimates of the sub-

survival functions S1 and S2 under the restriction that S1 ≤ S2. Peterson (1977) has

derived the unrestricted generalized nonparametric m.l.e.’s of the sub-survival function S1

and S2. It is clear from his discussion or otherwise, that the generalized NPMLE’s of the

sub-survival functions put their weights on the set of observations.

We assume that failures occur on the times t1 < t2 < . . . < tm (t0 = 0 and tm+1 = ∞).

For i = 1, 2 and j = 1, . . . ,m, let pi,j be the probability of failure from cause i at time tj , n

be the total number of items on test (sample size) and di,j be the number of failures from

cause i at time tj . Then

Si(tj) = pr(T ≥ tj , δ = i)

=
m∑

l=j

pi,l, (2.1)

i = 1, 2; j = 1, 2, . . . ,m. The likelihood function is

L =

 m∏
j=1

p
d1,j

1,j

 m∏
j=1

p
d2,j

2,j

 .

Let p be the 2m-dimensional vector

p = (p2,m, . . . , p2,1, p1,1, . . . , p1,m)

and let

di =

 d2,m−i+1, i = 1, 2, . . . ,m

d1,i−m, i = m + 1,m + 2, . . . , 2m.

Now maximizing L is equivalent to maximizing L2 which can be written as

L2 =

 2m∏
j=1

p
dj

j

 2m∏
j=1

p
d2m−j+1

2m−j+1

 (2.2)
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where

pi =

 p2,m−i+1, i = 1, 2, . . . ,m

p1,i−m, i = m + 1,m + 2, . . . , 2m.

Formulated in this way, the problem reduces to the one considered by Dykstra, Kochar

and Robertson (1995b) where they obtain nonparametric maximum likelihood estimators

of a distribution function under the constraint that the distribution is symmetric about the

origin as well as under the constraint that it is positively biased.

The unrestricted m.l.e. of p is p̂i =
di

n
, i = 1, 2, . . . , 2m, and the m.l.e. of p under the

restriction S1 = S2 is p̂
(0)
i = p̂

(0)
2m−i+1 =

di + d2m−i+1

2n
, i = 1, 2, . . . ,m.

Now maximizing L subject to the constraint S1 ≤ S2 is equivalent to maximizing (2.2)

subject to the constraint

p
st
≤ p

′
(2.3)

where “
st
≤” denotes stochastic ordering. Note here that p

′
denotes the reversed 2m di-

mensional vector (p1,m, . . . , p1,1, p2,1, . . . , p2,m). This is essentially the two-sample problem

of estimating p and p
′

under the stochastic ordering constraint p
st
≤ p

′
. The two-sample

problem has been studied by Brunk et. al. (1966) and Barlow and Brunk (1972) and its

solution can be used here. Throughout the rest of the paper, we assume multiplication and

division of vectors are done coordinate-wise.

Theorem 2.1 If pi > 0 for i = 1, 2, . . . , 2m, the m.l.e. of p subject to the constraint (2.3)

is given by

p̂(1) = p̂Ep̂

(
p̂ + p̂

′

2p̂
|A
)

(2.4)

where Ew(x|A) denotes the least squares projection with weights w of the vector x onto the

cone A = {x, x1 ≥ x2 . . . ≥ x2m}, of nonincreasing vectors.

Proof: The proof is similar to that of Theorem 2.1 in Dykstra, Kochar and Robertson

(1995b) and is omitted.
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There are several algorithms available in the literature for computing Ew(x|A). The

easiest to implement is the pool adjacent violators algorithm (PAVA) and is discussed in

Section 1.2 of Robertson, Wright and Dykstra (1988).

Using (2.4) and (2.1) we can obtain the MLE’s of the sub- survival functions under the

restriction that S1 ≤ S2.

3 Hypothesis Testing

We now consider the problem of testing the null hypothesis H0 against the alternative H1.

In our asymptotic theory, the number, m, of support points for T is fixed and the sample

size n increases to ∞.

Let T01 be the log-likelihood ratio test statistic for this problem. We show that the

limiting distribution of T01 is of chi-bar square (a mixture of independent chi-squares)

type and provide the expression for the associated weights. In order to derive the limiting

distribution of the test statistic, we make use of the following lemma.

lemma 3.1 Let x = (x1, x2, . . . , x2m) be such that xi = −x2m−i+1,∀i and let

w = (w1, w2, . . . , w2m) be such that wi = w2m−i+1. If A = {(u1, u2, . . . , u2m)T ,

u1 ≥ u2 ≥ · · · ≥ u2m} and I = {(u1, u2, . . . , um), 0 ≥ u1 ≥ u2 ≥ . . . ≥ um} then

Ew(x|A)i =

 Ewr(xr|I)i i = m + 1,m + 2, . . . , 2m

−Ewr(xr|I)i i = 1, 2, . . . ,m

where xr(wr) is the restriction of x(w) to {m + 1,m + 2, . . . , 2m}.

The proof of this lemma follows immediately by verifying that Ew(x|A) as given above

satisfies the following sufficient conditions (see Theorem 1.3.2 of Robertson, Wright and

Dykstra (1988)),
2m∑
i=1

(xi − Ew(x|A)i)Ew(x|A)iwi = 0
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and
2m∑
i=1

(xi − Ew(x|A)i)yiwi ≤ 0

for all y ∈ A.

Next we give a key distributional result. Expanding ln p̂
(0)
i and ln p̂

(1)
i about p̂i with a

second degree remainder term and using the fact that
2m∑
i=1

p̂
(1)
i =

2m∑
i=1

p̂
(0)
i = 1, it follows that

T01 = 2n

{
2m∑
i=1

p̂i ln p̂
(1)
i −

2m∑
i=1

p̂i ln p̂
(0)
i

}

= n


2m∑
i=1

p̂i

β2
i

(
p̂i − p̂

(0)
i

)2
−

2m∑
i=1

p̂i

α2
i

(
p̂iEp̂

(
p̂ + p̂

′

2p̂
|A
)

i

− p̂i

)2


= n


2m∑
i=1

p̂i

β2
i

(
p̂
′
i − p̂i

2

)2

−
2m∑
i=1

p̂3
i

α2
i

(
Ep̂

(
p̂− p̂

′

2p̂
|A
)

i

)2


where for i = 1, 2, . . . , 2m, βi (αi) is between p̂i and p̂
(0)
i (p̂i and p̂

(1)
i ) and converges almost

surely to pi under H0.

Let ψ =
√

n(p̂
′ − p̂)/p̂. By the multivariate central limit theorem the random vector

√
n(p̂−p) converges in distribution to p

′
(U−UE) where U1, U2, . . . , U2m are independent

normal random variables with mean zero and respective variances p−1
1 , p−1

2 , . . . , p−1
2m, U =

2m∑
i=1

piUi and E = (1, 1, . . . , 1)T . Therefore under H0

ψ =
√

n[(p̂− p)
′ − (p̂− p)]
p̂

L→ p
′
(U− UE)

′ − p(U− UE)
p

= U
′ −U = V.

Hence

T01
L→ 1

4

2m∑
i=1

pi (Vi − Ep(V|A)i)
2

=
2m∑

i=m+1

(Vi − Epr(Vr|I)i)
2 (

pi

2
)
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where the last equality follows from Lemma 3.1 and pr and Vr are the restrictions of p and

V to m + 1,m + 2, . . . , 2m. As shown in the next theorem, the limiting distribution of T01

is chi-bar square which depends on the unknown values of p through the level probabilities.

The least favorable distribution can be found using the theory derived in Section 3.4 of

Robertson, Wright and Dykstra (1988). These results are summarized in the following

theorem.

Theorem 3.1 If p satisfies H0 and pi > 0, i = 1, 2, . . . , 2m, then for any real number t

lim
n→∞

prp(T01 ≥ t) =
m∑

j=0

p(j, m,pr)pr(χ2
m−j ≥ t)

where p(0,m,pr) is the probability that Epr(Vr|I) is identically zero and p(j, m,pr) for

j = 1, 2, . . . ,m is the probability that Epr(Vr|I) has j distinct values. Furthermore,

sup
p

lim
n→∞

prp(T01 ≥ t) =
1
2
pr(χ2

m−1 ≥ t) +
1
2
pr(χ2

m ≥ t).

A test based upon the least favorable distribution given above is likely to be conservative.

There is considerable evidence that if the values of pm+1, pm+2, . . . , p2m do not vary too much

then a test based on equal weights critical value will have a significance level reasonably

close to the reported value. These equal weights level probabilities are discussed in Section

3.3 in Robertson, Wright and Dykstra (1988) and are tabulated in A.12 of their book. Since

we have 0 as an upper bound in the cone of interest here, the value of m should be increased

by 1 to account for it (this is like having m+1 normal means indexed by 0, 1, 2, . . . ,m with

the weight associated with the variable indexed by 0 being ∞.)

Another alternative is to approximate prp(T01 ≥ t) by
m∑

j=0

p(j, m, p̂(0)
r )pr(χ2

m−j ≥ t)

where p̂(0) is the estimator of p under the null hypothesis. This has the same asymptotic

distribution as T01 and provides a good approximation.

Next we consider testing H1 as a null hypothesis against the alternative H2 of no re-

striction on S1 and S2. Let T12 be the log-likelihood ratio test statistic corresponding to
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this situation then

T12 = 2n

{
2m∑
i=1

p̂i ln p̂i −
2m∑
i=1

p̂i ln p̂
(1)
i

}

= n
2m∑
i=1

p̂i

τ2
i

(
p̂iEp̂

(
p̂ + p̂

′

2p̂
|A
)

i

− p̂i

)2

= n
2m∑
i=1

p̂3
i

4τ2
i

(
Ep̂

(
p̂
′ − p̂
p̂

|A
)

i

)2

where τi is between p̂i and p̂
(1)
i and converges almost surely to pi under H1.

We have the following theorem.

Theorem 3.2 For any real number t

sup
p

st
≤p′

lim
n→∞

prp(T12 ≥ t) = sup
p=p′

lim
n→∞

prp(T12 ≥ t)

and

sup
p=p′

lim
n→∞

prp(T12 ≥ t) =
k+1∑
l=1

(
k
l−1

)
2−kpr(χ2

l−1 ≥ t).

Proof: The proof of this theorem is similar to that of Theorem 4.2 of Robertson and

Wright (1981). We only give the main idea.

Let η0 = 0 < η1 < . . . < ηA = 2m be such that p1+· · ·+pηi = p
′
1+· · ·+p

′
ηi

, i = 1, 2, . . . , A

and p1 + · · ·+pi > p
′
1 + · · ·+p

′
i for i 6= ηj , j = 1, 2, . . . , A. We note that A is even only when

P (δ = 1) = P (δ = 2).

Assume that P (δ = 1) < P (δ = 2), then A = 2k + 1 for some k. Let

D = {x ∈ A, xηi−1+1 = xηi−1+2 = . . . = xηi , i 6= k + 1, xηk+1 = xηk+2 = . . . = xηk+1
= 0}.

It follows from Robertson and Wright (1981) that for all w and n sufficiently large

Ep̂

(
p̂
′ − p̂
p̂

|A
)

= Ep̂

(
p̂
′ − p̂
p̂

|D
)
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and

T12 = n
2m∑
i=1

p̂3
i

4τ2
i

(
Ep̂

(
p̂
′ − p̂
p̂

|A
)

i

)2

=
2m∑
i=1

p̂3
i

4τ2
i

(
Ep̂

(√
n(p̂

′ − p̂)
p̂

|D
)

i

)2

L→ 1
4

2m∑
i=1

pi (Ep (V |D)i)
2

where V = (V1, V2, . . . , V2m)T is as defined in the proof of the previous theorem.

Let A(k)
p = {(u1, u2, . . . , u2k)T , u1 ≥ u2 ≥ . . . ≥ uk ≥ 0 ≥ uk+1 ≥ . . . ≥ u2k} and let

wi =
ηi∑

j=ηi−1+1

pj , i = 1, 2, . . . , 2k + 1, i 6= k + 1

Define V(k) = (V (k)
1 , V

(k)
2 , . . . , V

(k)
2k ) where V

(k)
i = V

(k)
2k−i+1, i = 1, 2, . . . , k, and V

(k)
i , i =

1, 2, . . . , k, are independent and normally distributed with means equal zero and variances

equal to 1/wi, i = 1, 2, . . . , k. Careful inspection of the least squares projection onto D

shows that

T12
L→ 1

4

2m∑
i=1

pi (Ep (V|D)i)
2

=
1
4

2k∑
i=1

wi

(
Ew

(
V(k)|A(k)

p

)
i

)2

=
k∑

i=1

wi

2

(
Ewr

(
V (k)

r |I(k)
r

))2

where I(k)
r = {(u1, . . . , uk)T , u1 ≥ u2 ≥ . . . ≥ uk ≥ 0},V(k)

r = (V1, V2, . . . , Vk)T , wr =

(w1, w2, . . . , wk)T and the last equality follows from Lemma 3.1.

Since
2m∑
i=1

V 2
i pi =

2m∑
i=1

(Vi − Ep (V|D)i)
2 pi +

2m∑
i=1

(Ep (V|D)i)
2 pi

and D ⊂ A with equality only when p = p
′
, we have

2m∑
i=1

(Ep (V|D)i)
2 pi
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is largest when p = p
′

and hence the first conclusion of the theorem. If it is the case

that P (δ1 = 1) = P (δ1 = 2), then A = 2k for some k and the proof is the same as

above with D = {x ∈ A, xηi−1+1 = xηi−1+2 = . . . = xηi , i = 1, 2, . . . , 2k} and A(k)
p =

{(u1, u2, . . . , u2k)T , u1 ≥ u2 ≥ . . . ≥ u2k}. The second conclusion follows from Theorem

3.6.1 of Robertson, Wright and Dykstra (1988).

4 Simulation Studies

In this section we compare the power of our test T01 with that of the likelihood ratio test

T ∗01 described in Dykstra, Kochar and Robertson (1995a) for testing the equality of cause

specific hazard rates against certain ordered alternatives belonging to H1.

In the first study we assume that X and Y are independent exponential random variables

with parameters λ1 and λ2, respectively and the available data are only in the form of (T, δ)

for each pair of observations. We group the data into 4 cells obtained by dividing the real

line into 4 intervals using the quartiles of T = min(X, Y ). The sample size used in our

study is 50 and the number of replications is 5000. For testing H0 against H1 at 5% level,

the cutoff point of T01 is 8.191 and is obtained by simulating the weights in the limiting

distributions in Theorem 3.1. The 5% cutoff point for T ∗01 is 6.498 and the results are

reported in Table 4.1. It is not surprising that in this case the T ∗01 test is more powerful.

For this alternative, the cause specific hazard rates are ordered and the T ∗01 is the likelihood

ratio statistic for this alternative.
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Table 4.1

POWERS OF THE TESTS

λ1 λ2 T01 T ∗01

40 40 0.0544 0.0568

40 45 0.0874 0.1052

40 50 0.1260 0.1718

40 55 0.1892 0.2540

40 60 0.2608 0.3492

40 65 0.3212 0.4356

40 70 0.4092 0.5190

40 75 0.4744 0.5962

40 80 0.5616 0.6784

40 85 0.6298 0.7446

40 90 0.6954 0.7994

40 95 0.7446 0.8340

40 100 0.7928 0.8768

In the next simulation study we assume that X and Y are independent and that under

the null hypothesis each of them has exponential distribution with mean equal to 2. We

assume that under the alternative hypothesis X has an exponential distribution with mean

equal to 2 and Y has a Weibull distribution with scale parameter 1/2 and shape parameter

2. Note that in this case the cause specific hazard rates are the same as the ordinary hazard

rates and are given by hX(t) = 1/2 and hY (t) = t. Although in this case the cause specific

hazard rates cross each other, it can be seen that their sub-survival functions are ordered

(i.e. SY (t) ≥ SX(t),∀t). For testing H0 against H1 at level 0.05, the same cutoff points as

in the previous example are used and results of the power study are reported in Table 4.2.
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Table 4.2

POWERS OF THE TESTS

Sample size T01 T ∗01

30 0.4990 0.3838

40 0.6052 0.4650

50 0.6996 0.5502

60 0.7816 0.6314

70 0.8322 0.7034

80 0.8744 0.7522

90 0.9170 0.8120

100 0.9412 0.8412

110 0.9610 0.8774

120 0.9762 0.9038

It is clear from the above tables that the likelihood ratio test T01 is quite powerful.

4.1 Example

We consider the mortality data on mice reported in Hoel (1972). The data were obtained

from the laboratory experiment on RFM strain male mice which had received a radiation

dose of 300r at an age of 5-6 weeks and were then kept in a conventional environment. We

consider only two major risks of death- the second risk is cancer and the first risk is the

combination of all other risks. This data set has also been analyzed previously by Dykstra,

Kochar and Robertson (1995a) where they test for the equality of the cause specific hazard

rates of the two risks. The grouped data along with the various estimates is given below in

Table 4.3.
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Table 4.3

No. Interval d1j d2j p̂1j p̂2j p
(1)
1j p

(1)
2j

1 < 350.0 15 18 0.1515 0.1818 0.1515 0.1818

2 [350,450) 6 7 0.0606 0.0707 0.0606 0.0707

3 [450,550) 6 4 0.0606 0.0404 0.0606 0.0404

4 [550,650) 8 18 0.0808 0.1818 0.0808 0.1818

5 [650,750) 2 12 0.0202 0.1212 0.0202 0.1212

6 [750,850) 2 1 0.0202 0.0101 0.0152 0.0152

For this example the value of T01 = 12.6247 and the value of T12 = 0.3397. The simulated

level probabilities using p̂(0)
r are p(0, 6, p̂(0)

r ) = 0.22405, p(1, 6, p̂(0)
r ) = 0.08370, p(2, 6, p̂(0)

r ) =

0.43755, p(3, 6, p̂(0)
r ) = 0.20570, p(4, 6, p̂(0)

r ) = 0.04375, p(5, 6, p̂(0)
r ) = 0.00515, p(6, 6, p̂(0)

r ) =

0.00010 and the p-value for testing H0 versus H1 −H0 using these weights is 0.0204 and is

0.0383 when the least favorable distribution is used instead. For testing H1 versus H2−H1,

the p-value based on the least favorable distribution given in Theorem 3.2 is 0.8883.

This data would appear to support the conclusion that the sub-survival is larger for the

risk of cancer than for all other risks when that hypothesis is compared to the equality of the

two sub-survival functions. However, the value of the test statistic as developed in Dykstra

et al. (1995a) for testing equality of the cause specific hazard rates against the alternative

that they are ordered is 12.2222 and the p-value using Table 1 in Dykstra, Kochar and

Robertson (1995a) is approximately 0.01.

15



Acknowledgments

The authors are grateful to the referee for carefully reading the paper.

References

1. Aly, E., Kochar, S. and McKeague, I. (1994). Some tests for comparing cause specific
hazard rates. J. Amer. Statist. Assoc., 89, 994-999.

2. Barlow, R. E. and Brunk, H. D. (1972). The isotonic regression problem and its dual.
J. Amer. Statist. Assoc., 67, 140-147.

3. Brunk, H. D., Franck, W. E. Hanson, D. L. and Hogg, R. V. (1966). Maximum like-
lihood estimation of the distributions of two stochastically ordered random variables.
J. Amer. Statist. Assoc., 61, 1067-1080.

4. Carriere, K, C. and Kochar, S. C. (2000). Comparing sub-survival functions in a
competing risks model. Lifetime Data Analysis, 6, 85-97.

5. Deshpandé, J. V. (1990). A test for bivariate symmetry of dependent competing risks.
Biometric Journal 32, 737-746.
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