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SUMMARY

The competing risks set-up is considered where an individual is subject to failure due
to two independent competing risks. The available data consist of observed times to
failure and the causes of failure. On the basis of this information, distribution-free tests
are proposed for testing the equality of the two failure distributions against location,
scale and general stochastic ordering alternatives. Locally most powerful rank tests are
derived and a generalization of the Wilcoxon test has been proposed. Exact critical points
are provided for the newly proposed tests, and Pitman efficiency comparisons made.

Some key words: Asymptotic relative efficiency; Locally most powerful rank test; Rank test; U-statistic.

1. INTRODUCTION

Consider the competing risks set-up where a unit is subject to failure due to one of
two risks. Let the notional lifetimes of a unit under these two risks be X and Y. The
observations are T =min (X, Y), the time at which the unit fails and § = I(X > Y), the
failure type, I(A) being the indicator function of the event A. Such data also arise for
two components with lifetimes X and Y when they are arranged in series. Cox (1959)
has discussed some situations when the above type of data arise and considered some
inferential procedures for this model.

We assume that X and Y are independent and absolutely continuous random variables.
The assumption of independence of the risks is not always appropriate and cannot be
tested from observations (T, §) alone, due to nonidentifiability problems.

Ordinarily, being lifetimes, X and Y would be positive, but we do not need this
restriction. Let F and G be the distribution functions, F and G the survival functions
and f and g the probability density functions of the two risks X and Y, respectively. Let
X,,...,X,and Y,, ..., Y, be two independent random samples from F and G, respec-
tively, denoting the hypothetical times to failure of the n individuals in the sample under
the two risks. However, because of the competing risks set-up, we observe only
(T, 8,),...,(T,, 8,), where T,=min (X, Y;) denotes the time to failure and &=
I(X;>Y;) indicates the cause of failure of the ith unit. On the basis of this data, we
wish to test the null hypothesis, Hy: F(x)= G(x), for every x, against the alternative,
H,: F(x)< G(x), for every x, and with a strict inequality for some x.
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For uncensored samples, many tests are available for this problem. The Wilcoxon and
the Savage tests perform very well under different situations (Kochar, 1978; Deshpandé
& Kochar, 1982). In § 2, we derive locally most powerful rank tests for the parametric
version of the alternative H, in the competing risks problem and specialize it to location
and scale alternatives. In § 3, we propose two heuristic distribution-free tests based on
certain U-statistics. One of these is analogous to the Wilcoxon-signed rank test. In § 4,
the exact and the asymptotic distributions of these statistics are discussed. Tables of
critical points are provided for small samples. The last section is devoted to asymptotic
relative efficiency comparisons.

2. LOCALLY MOST POWERFUL RANK TESTS

Consider the null hypothesis Hy: F(x) = G(x) for all x, against alternative H,: F(x) =
Fy(x) and G(x) = F,(x), for > 0. In the competing risks set-up the likelihood function
is

L(1,8,0)=L(t),...,t:;;8;,...,8,,0)= IJ, {fo(t)F(t)}°{ f (1) Fo (1)} 2

See, for example, Miller (1981, pp. 16-7).
Let Ty, ..., T, be the ordered life times and let R; be the rank of T; among these.

Also let
B {1 if T;, corresponds to a Y-observation,
7710 otherwise.

Then the likelihood of ranks P(R, w, 0) is obtained by integrating L(t, w, 6) over the
range —0 < f;,<...<l,)<00. It may be written as

P(R, w, 0) =J ljl [{fo () F(t) Y { (1) Fp(2)}' ] dt,.

Here and later the integral is over the region f,<...<t,. In particular under H,,
P(R,w,0)=(n12")"".
Let us define
F*(t)=[0Fs(x)/80]6=0, [*(t)=[3f5(x)/36]4-0,
h(t)=f*(1)/1(1), hot)=F*(1)/ F(1),

a;=nl2" J' hi(t) ﬂ {f(t)F(1,)} dt, b,=nl2" J hy(t;) ﬁ {f(t)F(1,)} dt..

THEOREM 2-1. Under suitable regularity conditions (Puri & Sen, 1971, pp.108-9),
the locally most powerful rank test for testing H, against H, is based on the statistic
2{Wa—(1-W)b}.

COROLLARY 2-2. The locally most powerful rank test for testing H, against the logistic
location alternative, that is

H,: F(x)=exp (x)/{1+exp (x)}, Fy(x)=exp(x+6)/{1+exp(x+6)} (6>0)
is based on the statistic

J
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where

b 1 J 2n(2n—=2)...2n—-2k+4)

T on+1 & 2n+)2n—1)...(2n—2k+3) (G=1,....n).

COROLLARY 2-3. The locally most powerful rank test for testing H, against the exponential
scale alternative, that is,
H,: F(x)=exp(—x), Fy,(x)=exp{—(1+0)x} (6>0)

is based on the sign statistic

™M=

S1= Z “/,': 6,‘.
i=1

i=1

I

Note that for uncensored samples, the corresponding locally powerful rank tests are
the Wilcoxon test and the Savage exponential scores tests.

3. TESTS BASED ON U-STATISTICS

The locally most powerful rank tests derived in § 2 are difficult to use for most
distributions because of lack of precise information about the alternatives and analytic
difficulties. Hence we propose below simple distribution-free tests based on certain
U-statistics.

Gehan’s (1965) and Prentice’s (1978) generalizations of the Wilcoxon test are useful
when the two samples undergo independent random censoring. However, in the competing
risks set-up the two random samples censor each other and these tests are not applicable.
The sign statistic

U=n')Y8=n"S5, (3-1)

the proportion of deaths due to second cause, is easily constructed and has attractive
properties. Under the alternative Hy, a greater number of individuals or units are expected
to die from Risk II than from Risk I. Hence large values of U, are significant for testing
H, against H,. However, some additional information can be utilized for improving the
efficiency for some alternatives.

Let us simultaneously look at the pairs (T;, 6;) and (T}, §;). Table 1 is a description of
all mutually exclusive and exhaustive arrangements of the pairs (T;, §;) and (T, §;), in
terms of failure times. Consider the kernel

1 (6=1,T.<T),
¢:T,, 85 T;,8)=41 (8,=1,T,<T), (3-2)
0 otherwise.

Table 1. Information regarding (X, Y;) and (X, Y;) available in (T;, 8;) and (T, §;)

8=1,8=1 8=1,8=0 8,=0,8=1 8=0,8=0
T,>T, X>Y,X,>Y, X>Y,Y=>X, Y,=X,X,>Y, Y,=X, Y, =X
X,> Y, Y, > X, X,>Y, Y, > X,
T,<T, X>Y,X;>Y, X >Y,Y=X, Y= X, X,>Y, Y,=X, Y, =X,

J

X, >Y, X;>Y, Y;>X; Y,> X,
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In each of the four events for which ¢(T;, §;; T}, §;) takes the value 1 out of the total
of eight events, we find that min (Y}, Y;) <min (X, X;). In the other four events when
the kernel takes the value 0, the minimum of X’s is smaller than the minimum of Y’s.

Construct the U-statistic

U;‘ = {(Z)}_l Z &(T,, 65 7}, 5,') (3-3)

i<j<n

={('2’)}_1 21 (n—R,)5,, (3-4)

where R; is the rank of T; among T,,..., T,. Since T, =min (X, Y;) and §;=1 if and
only if Y;<X;, the quantity in the parentheses in (3-4) is the number of X)’s greater
than the observed Y;, for i & j. However, since 8, =1, Y; < X,. But the statistic U¥ does

not count this. Hence we modify U% and suggest the asymptotically equivalent version
U, defined by

U2={<Z)}_l iZ::I(n—R,.+1)6,~. (3-5)

Here U, is the total number of times an X observation is greater than an observed Y
observation in the combined arrangement of n X’s and n Y’s. In a sense this is analogous
to the Wilcoxon signed rank statistic adapted to the competing risk set-up. Large values
of U, are significant for testing H, against H,.

We propose another kernel

3 (51':1’8}:1)’
1 (T}>7}95i=095j=1)a
1 (T,>T,8=1,8=0),

T;,(S,, > 3-6
é( P =1 (T,> T, 8=0,58=0), (3:6)
-1 (’1;>T;951 0951_1)9

-3 (8,=0,8=0).

The rationale for (3-6) is as follows.

In the pairs (X;, Y;) and (X], Y;) we assign a score 1 if an X-observation is known to
be greater than a Y-observation and a score —1, otherwise. Thus §;=1, §;=1, T;> T,
gives us the information that X;> Y, X;> Y, X;> Y, but no information about (Xj, Y;).
Thus a total score of 3 is assigned to this arrangement. The assignment 8,=0, §;=1,
T,> T; provides the information that Y;>X;, X;>Y,, X;>Y,, only so we have two
favourable and one unfavourable comparison giving a total score of 1. Similarly, scores
are attached to the other six arrangements.

We construct the U-statistic corresponding to the above kernel, namely

u-{0) E_ ema ) 37)

1<i<j<n

() fEanr-mn) oo

Thus, Us is a linear combination of the sign statistic and the modified Wilcoxon statistic
2 R;8;. Again, large values of Us are significant for testing H, against Hy,.
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4. DISTRIBUTIONS OF THE TEST STATISTIC

sz=(;'> U, s3=(;') Us. (4-1)

We first find the moment generating functions of S, and S; under H, using the following
results.

The pair (X, Y) follows the proportional hazards model G(x)={F(x)}® for a positive
constant B if and only if T=min (X, Y) and § = I(X > Y) are independent (Armitage,
1959; Allen, 1963). Also, under H,, W,,..., W, are independent and identically dis-
tributed with pr(W;=1)=pr(W,;=0)=3% (i=1,...,n).

With the help of these results, we can prove the following theorem.

Let

THEOREM 4-1. Under H,, the moment generating functions of S, and S, are

n

M,y(1)=2"" Q {1+exp (1)}, (4-2)
M;(t)=2""exp {in(_;z_—_lﬂ} an; [1—exp{2t(2n—j)}]. (4-3)

Proof. From (3-5) we know that

n

$= Y (n-R+1D5=Y (n—j+1) W,

j=1 Jj=1

from which (4-2) follows immediately. Similarly, we find M;(t), the moment generating
function of S;. O

Now M,(t) is the same as the moment generating function of the Wilcoxon signed
rank statistic under H, (Hettmansperger, 1984, p. 35). Hence S, will have the same null
distribution as the Wilcoxon signed rank statistic. In particular, the tables of critical
points of the Wilcoxon signed rank test can be used for performing the test S,. These
are given, for example, by Hollander & Wolfe (1973).

Following Hettmansperger (1984, pp. 35-6), we find the probability distribution of S;,
under H,, by using the expansion

M;(t)=a,+a,exp (t)+a,exp (2t)+. ..

of the moment generating function and observing that pr (S; =j) = a;. Table 2 gives the
upper critical points of S;. It is also clear from (4-3) that the null distribution of S; is
symmetric about zero. From the moment generating functions, we easily find that under
HO;

E(S,)=n(n+1)/4, var(S,)=n(n+1)(2n+1)/24,
E(S;)=0, var(S;)=n(n—1)(14n—-13)/6.
From (3-3) and (3-5) we find that
nH{U,~ E(U,)} = n{U§ — E(UD}+ n{2(n - D} {U, - E(U))}.

Now U, and U¥ are U-statistics and n*{U, — E(U,)} converges to a normal distribution
with mean zero. Hence asymptotically, U, and U% are equivalent. The proof of the
following theorem easily follows (Puri & Sen, 1971, p. 51).
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Table 2. Critical points for S;, exact significance
level and level based on rormal approximation

n 1% 5%

4 — —

5 —_— 22;0-0625,0-0552
6 — 31, 0-0625, 0-0499
7 51;0-0156,0-0183 41; 0-0547, 0-0463
8 68, 0-0117,0:0126 50; 0-0508, 0-0499
9 84;0-0117,0-0113 62; 0-0508, 0-0461
10 99; 0-0107,0-0117 73, 0-0508, 0-0472
11 115, 0-0102, 0-0118 83; 0-0527,0-0513
12 134, 0-0105, 0-0186 98; 0-0500, 0-0467
13 152;0-0102, 0-0109 108; 0-0528, 0-0516
14 169; 0-0106, 0-0116 123; 0-0511, 0-0494
15 191; 0-0103, 0-0107 137, 0-0516, 0-0495
16 210; 0-0105, 0-0111 150; 0-0523, 0-0512
17 232, 0-0100, 0-0181 166; 0-0519, 0-0500
18 255;0-0100, 0-0105 181; 0-0516, 0-0506
19 275;0-0104, 0-0110 197, 0-0516, 0-0505
20 298; 0-0104, 0-0109 214, 0-0511, 0-0499

THEOREM 4-2. The asymptotic distribution of n*{U,— E(U,)} is normal with mean zero
and variance o7, = 4&,, for i=2, 3, where

&= E{‘/’?(Xl » Yl)}_ Ez( Un),

Under H,,

E(U2)=%’ O-ZUZ=%3 E(U3):Oa 0-2U3=%'

i(x1, y1) = E{¢i(x,, y1; X3, Yo)}

The normal approximation to the null distribution of U; or S; is fairly good for n > 20.
In Table 2 we provide for n=<20 the critical points of the statistic S; for levels of
significance near 0-01 and 0-05, and associated exact and approximate significance levels.
Now E, (U;)<Ey,(U;) (i=1,2,3); hence tests based on these statistics are consistent
for the entire alternative hypothesis Hy,.

5. ASYMPTOTIC RELATIVE EFFICIENCIES

To compare the Pitman asymptotic relative efficiencies, we parameterize the problem
in the following way. Let F(x)= Fy(x) and G(x)= F,(x), where 6=0 and such that
Fy(x) < F,(x) for all x and with a strict inequality over a set of nonzero probability for
every 6> 0. The following alternatives have been considered for efficiency comparisons:

location alternative, H,: Fy(x)=F(x+0);

scale alternative, H,: Fy(x)=F{(0+1)x} (x=0);
Makeham distribution, Hy: Fo(x)=exp[—{x+0(x+e*=1)}];
- — k .
H,: Fy(x)= F(x)[l + o{ Y, F’(x)}]
i=1
(k=1,0<0<1/k);

Hs: Fy(x)=(1—-0)F(x)+60F ' (x) (k>0);
proportional hazards model, Hg: F,(x)={F(x)}'*°.
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All these alternatives indicate the desired dominance. Table 3 gives the asymptotic relative
efficiencies of the U, and Uj tests with respect to the sign test U, for the above alternatives
(Puri & Sen, 1971, p. 116). The tests based on U, and U; do generally better than the
sign test based on U, for location alternatives. The sign test seems to be better for
alternatives similar to the exponential scales, for which it is optimal. In many other cases
of stochastic dominance the tests based on U, and U; have larger efficiency. Hence a
choice between U,, U, and U; should be made accordingly. All three tests are consistent
and unbiased for testing H, against H,.

Table 3. Asymptotic relative efficiencies of the U, and Usj tests with respect to the sign

test U,
Alternatives U, U; Alternatives U, U,
H, Uniform; Hs: k=2 1-333 1-190 H, Exponential, F 0-750  0-964
H, Normal 1-109 1-108 H, 0-270 0-724
H, Logistic, Hi: k=1; Hs: k=1 1-080 1-:097 H, k=2 1-422 1008
H, Double exponential 1-021 1-074 H, k=3 0-499  0-958
H, Exponential 3-000 1-714 Hs k=3 1-531 1-259
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