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DISPERSIVE AND SUPERADDITIVE ORDERING 

A. N. AHMED, *King Saud University 
A. ALZAID, *King Saud University 
J. BARTOSZEWICZ, **University of Wroclaw 
S. C. KOCHAR, ***Panjab University 

Abstract 

Recently many authors have established connections between 
dispersive ordering and some other partial orderings of distributions. 
This paper presents the connection which superadditive ordering has 
with dispersive ordering. 

1. Introduction 

Let F and G be two distribution functions and let F-1 and G-1 be their corresponding 
left-continuous inverses. G is said to be more dispersed than F (Lewis and Thompson 

disp 

(1981), written F < G, if 

(1.1) G(G-1(a) + a), - F(F-1(a) + a) for all a > 0 and a E (0, 1). 

Deshpande and Kochar (1983) have shown that (1.1) is equivalent to 

(1.2) G-(fl) - G-1(a) 
- 
F-1(fl) - F-1(a) whenever 0< a <l <1. 

The last inequality is equivalent to saying 

(1.3) G-'F(x) -x is non-decreasing in x, 

(see for example Shaked (1982)). 
The support of F will be denoted by S,. In reliability theory, if F and G are such that 

F(0) = G(0) =0 and G is strictly increasing on SG, an interval, three well-known 
orderings of distributions are introduced (see Barlow and Proschan (1975)). F is said to 
be convex ordered with respect to G, written < G, if G-'F(x) is a convex function in x 
on S,, assumed an interval. 

F is star-ordered with respect to G, written F < G, if G-'F(x) is star-shaped, i.e., 
G-1F(x)/x is increasing in x for x E S,. 
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Su F is said to be superadditive (subadditive) with respect to G, written F < G(F < G), 
if 

(1.4) G-1F(x + y) - (<)G-1F(x) + G-1F(y) for all x, y e SF. 

Recently, many connections have been established among the convex ordering, the 
star-shaped ordering and the dispersive ordering. See Barlow and Proschan (1975), 
Deshpande and Kochar (1983), Sathe (1984), and Bartoszewicz (1985a), (1985b), 
among others. 

The purpose of this paper is to establish connections between the superadditive 
ordering and the dispersive ordering of distributions. To avoid technical complications 
in the statements of the results and in the proofs we shall assume throughout that the 
supports of the underlying distributions are intervals and that the distributions have no 
atoms. Thus, these distributions will have strictly increasing and continuous inverses on 
(0, 1). 

2. The main results 

We first show that superadditive ordering neither implies nor is implied by the 
dispersive ordering. 

disp su 

Example 2.1. Let F(x) = G(x + 0), 0 >0. Then F < G but F t G. That is, the 

dispersive ordering does not imply the superadditive ordering. 

Example 2.2. Let F have the Weibull distribution function 

F(x) = 1- exp (-x2), x >0, and let G(x) = 1- exp (-x), > 0. 
disp 

Since G- F(x) - x =x2 - x is not non-decreasing in x for all x 
i_0, 

then F < G. 
However, it is easy to show that G-1F is superadditive. 

Next we establish, through the following set of results, connections between the 
dispersive and the superadditive orderings. 

su st disp 

Theorem 2.3. If F < G and F < G, then F < G. 

Proof. Assume F < G. Then 

(2.1) G-'F(x + y) G-F(x) + G-'F(y) for all x, y e SF. 

St 

Since F < G implies G-1F(x) x, then by (2.1), 

G-1F(x + y) > G-'F(y) + x, x, y E S,. 

Equivalently, 
G-'F(x + y) - (x + y) ' G-'F(y) - y, x, y E S,, 

which holds if and only if G-'F(x) - x is non-decreasing in x E SF, i.e., if and only if 
disp 

F < G. 
Denote by 

1- F(x + t) 

the conditional reliability of a unit of age t if F is the life distribution of the unit. 
The following is an immediate consequence of Theorem 2.3. 
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su disp 

Corollary 2.4. If F(x I t)- 
- 

G(x I t) for all x 
- 

0 and t > 0 and F < G, then F < G. 

Remark 1. Theorem 2.3 can be used to improve Bartoszewicz's (1985a) result which 
cst 

disp 

says that if F G and F < G then F < G, and Bartoszewicz's (1985b) observation 
st 

disp 

which states that if F < G and F < G then F < G. This is so since it is well known that 

F < G -- F < G -> F < G (see Barlow and Proschan (1975), pp. 107 and 109). 

Sathe (1984) has pointed out that if 
limxo+ (G-'F(x)/x) 

- 
1 and F G, then 

disp 

F < G. In our next result, it is shown that the limit condition arises naturally under the 
superadditive ordering and that Sathe's conclusion still holds under the weaker 

condition F < G. This is contained in the following. 

Lemma 2.5. If F < G, then (dldx)G-'F(x) 
- 

limy,o+ (G-'F(y)/y) for all x E S,. 

Proof. Note that as F < G, then by (1.4), 

G-1F(x +y) > G-1F(x) + G-F(y) for all x, y E S,, 

so that 

G-1F(x + y) - G-IF(x)> G-F(y) 
(2.3) 

y y 

Taking limits of both sides of (2.3) as y - 0, the conclusion of the lemma follows. 
su disp 

Theorem 2.6. If lim,,o+ 
(G-'F(x)/x)- 

1 and F < G, then F < G. 

Proof. We claim that, under the assumptions of the proposition 

(2.3) - {G-1F(x)-x} is non-negative for all xE S,. 

To see it, note that, as F < G and 
limxo+ (G-'F(x)/x) > 1, then by Lemma 2.5, 

(2.5) - G-1F(x) > 1 whenever x E S,. 
dx 

disp 

It follows that G-'F(x) - x is non-decreasing in x for all x E S,. Hence by (1.3), F < G. 

Remark 2. As a byproduct of Theorem 2.6 we have the following improved version 
of Desphande and Kochar's (1983) observation: If F and G are absolutely continuous 
with F(0) = G(0) = 0, and their corresponding densities are such that f(0) > g(0)> 0, 

su disp 

then F < G implies F < G. 
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