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Abstract
Let 𝑋1, . . . , 𝑋𝑛 be mutually independent exponential random variables with distinct hazard rates 𝜆1, . . . , 𝜆𝑛 and
let 𝑌1, . . . , 𝑌𝑛 be a random sample from the exponential distribution with hazard rate �̄� =

∑𝑛
𝑖=1 𝜆𝑖/𝑛. Also let

𝑋1:𝑛 < · · · < 𝑋𝑛:𝑛 and 𝑌1:𝑛 < · · · < 𝑌𝑛:𝑛 be their associated order statistics. It is proved that for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛,
the generalized spacing 𝑋 𝑗:𝑛 − 𝑋𝑖:𝑛 is more dispersed than 𝑌 𝑗:𝑛 − 𝑌𝑖:𝑛 according to dispersive ordering and for
2 ≤ 𝑖 ≤ 𝑛, the dependence of 𝑋𝑖:𝑛 on 𝑋1:𝑛 is less than that of 𝑌𝑖:𝑛 on 𝑌1:𝑛, in the sense of the more stochastically
increasing ordering. This dependence result is also extended to the proportional hazard rates (PHR) model. This
extends the earlier work of Genest et al. [(2009)]. On the range of heterogeneous samples. Journal of Multivariate
Analysis 100: 1587–1592] who proved this result for 𝑖 = 𝑛.

1. Introduction

Several notions of monotone dependence have been introduced and studied in the literature. Researchers
have also developed the corresponding dependence (partial) orderings which compare the degree of
(monotone) dependence within the components of different random vectors of the same length. For
details, see the pioneering paper of Lehmann [16] and Chapter 5 of Barlow and Proschan [2] for
different notions of positive dependence, and that of Kimeldorf and Sampson [12] for a unified treatment
of families, orderings and measures of monotone dependence. For more detailed discussion of these
concepts, see Chapter 2 of Joe [9] and Chapter 5 of Nelsen [17].

Let {𝑋1, . . . , 𝑋𝑛} be a set of continuous random variables. Many authors have investigated the nature
of the dependence that may exist between two order statistics 𝑋𝑖:𝑛 and 𝑋 𝑗:𝑛 for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 under
different distributional scenarios. It seems natural to expect some degree of positive dependence between
them. It is well known that the order statistics based on independent (but not necessarily identically
distributed) random variables are associated (cf., [2, p. 32]). This yields many useful product inequalities
for order statistics of independent random variables, and in particular, Cov(𝑋𝑖:𝑛, 𝑋 𝑗:𝑛) ≥ 0 for all 𝑖 and 𝑗 ,
which was initially proved by Bickel [3] when the 𝑋’s are independent and identically distributed (i.i.d.).

Boland et al. [4] studied the problem of dependence among order statistics in detail and discussed
different types of dependence that hold between them. It is shown in that paper that in the case of
i.i.d. observations, any pair of order statistics is 𝑇𝑃2 dependent (also called monotone likelihood ratio
dependent) which is the strongest type of dependence in the hierarchy of various dependence criteria as
described in [2]). But this is not the case in the non-i.i.d. case. However, as is shown in Boland et al.
[4], in general, whereas 𝑋 𝑗:𝑛 may not be stochastically increasing in 𝑋𝑖:𝑛 for 𝑖 < 𝑗 , 𝑋 𝑗:𝑛 is always right
tail increasing (RTI) in 𝑋𝑖:𝑛. The reader is referred to Chapter 5 of Barlow and Proschan [2] for basic
definitions and relations among various types of dependence.
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It is also of interest to compare the strength of dependence that may exist between two pairs of order
statistics. When the parent distribution from which the random sample is drawn has an increasing hazard
rate and a decreasing reverse hazard rate, Tukey [22] showed that

Cov(𝑋𝑖′:𝑛, 𝑋 𝑗′:𝑛) ≤ Cov(𝑋𝑖:𝑛, 𝑋 𝑗:𝑛) (1.1)

for either 𝑖 = 𝑖′ and 𝑗 ≤ 𝑗 ′; or 𝑗 = 𝑗 ′ and 𝑖′ ≤ 𝑖. Kim and David [11] proved that if both the hazard and
the reverse hazard rates of the 𝑋𝑖’s are increasing, then inequality (1.1) remains valid when 𝑖 = 𝑖′ and
𝑗 ≤ 𝑗 ′; However, the inequality (1.1) is reversed when 𝑗 = 𝑗 ′ and 𝑖′ ≤ 𝑖.

Let 𝑋1, . . . , 𝑋𝑛 be mutually independent exponentials with distinct hazard rates 𝜆1, . . . , 𝜆𝑛 and let
𝑌1, . . . , 𝑌𝑛 form a random sample from the exponential distribution with hazard rate �̄� = (∑𝑛

𝑖=1 𝑋𝑖)/𝑛.
Sathe [18] proved that for any 𝑖 ∈ {2, . . . , 𝑛}

corr(𝑋1:𝑛, 𝑋𝑖:𝑛) ≤ corr(𝑌1:𝑛, 𝑌𝑖:𝑛). (1.2)

Although this observation is interesting, it merely compares the relative degree of linear association
within the two pairs. It is now widely recognized, however, that margin-free measures of association are
more appropriate than Pearson’s correlation, because they are based on the unique underlying copula
which governs the dependence between the components of a continuous random pair.

In this paper, a long-standing open problem that for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛, the generalized spacing 𝑋 𝑗:𝑛−𝑋𝑖:𝑛
is more dispersed than𝑌 𝑗:𝑛 −𝑌𝑖:𝑛 according to dispersive ordering, has been solved (cf. [23]). This result
is used to solve a related open problem that for 2 ≤ 𝑖 ≤ 𝑛, the dependence of 𝑋𝑖:𝑛 on 𝑋1:𝑛 is less than
that of 𝑌𝑖:𝑛 on 𝑌1:𝑛, in the sense of the more stochastically increasing ordering. This dependence result
is also extended to the proportional hazard rates (PHR) model. This extends the earlier work of Genest
et al. [8] who proved this result for 𝑖 = 𝑛. Section 2 is on some preliminaries where various definitions
and notations are given. The main results of this paper are given in Section 3.

2. Preliminaries

For 𝑖 = 1, 2, let (𝑋𝑖 , 𝑌𝑖) be a pair of continuous random variables with joint cumulative distribution
function 𝐻𝑖 and margins 𝐹𝑖 , 𝐺𝑖 . Let

𝐶𝑖 (𝑢, 𝑣) = 𝐻𝑖{𝐹−1
𝑖 (𝑢), 𝐺−1

𝑖 (𝑣)}, 𝑢, 𝑣 ∈ (0, 1)

be the unique copula associated with 𝐻𝑖 . In other words, 𝐶𝑖 is the distribution of the pair (𝑈𝑖 , 𝑉𝑖) ≡
(𝐹𝑖 (𝑋𝑖), 𝐺𝑖 (𝑌𝑖)) whose margins are uniform on the interval (0, 1). See, for example, Chapter 1 of Nelsen
[17] for details.

The most well-understood partial order to compare the strength of dependence within two random
vectors is that of positive quadrant dependence (PQD) as defined below.

Definition 2.1. A copula 𝐶1 is said to be less dependent than copula 𝐶2 in the positive quadrant
dependence (PQD) ordering, denoted (𝑋1, 𝑌1) ≺PQD (𝑋2, 𝑌2), if and only if

𝐶1(𝑢, 𝑣) ≤ 𝐶2 (𝑢, 𝑣), 𝑢, 𝑣 ∈ (0, 1).

This condition implies that 𝜅(𝑆1, 𝑇1) ≤ 𝜅(𝑆2, 𝑇2) for all concordance measures meeting the axioms
of Scarsini [19] like Kendall’s 𝜏 and Spearman’s 𝜌. See Tchen [21] for details.

Lehmann [16] in his seminal work introduced the notion of monotone regression dependence (MRD)
which is also known as stochastic increasingness (SI) in the literature.

Probability in the Engineering and Informational Sciences 731

https://doi.org/10.1017/S0269964822000146 Published online by Cambridge University Press



Definition 2.2. Let (𝑋,𝑌 ) be a bivariate random vector with joint distribution function 𝐻. The variable
𝑌 is said to be stochastically increasing (SI) in 𝑋 if for all (𝑥1, 𝑥2) ∈ 𝐼𝑅2,

𝑥1 < 𝑥2 ⇒ 𝑃(𝑌 ≤ 𝑦 | 𝑋 = 𝑥2) ≤ 𝑃(𝑌 ≤ 𝑦 | 𝑋 = 𝑥1), for all 𝑦 ∈ 𝐼𝑅. (2.1)

If we denote by 𝐻𝑥 the distribution function of the conditional distribution of 𝑌 given 𝑋 = 𝑥, then
(2.1) can be rewritten as

𝑥1 < 𝑥2 ⇒ 𝐻𝑥2 ◦ 𝐻−1
𝑥1
(𝑢) ≤ 𝑢, for 0 ≤ 𝑢 ≤ 1. (2.2)

Note that in case 𝑋 and 𝑌 are independent, 𝐻𝑥2 ◦ 𝐻−1
𝑥1
(𝑢) = 𝑢, for 0 ≤ 𝑢 ≤ 1 and for all (𝑥1, 𝑥2). The

SI property is not symmetric in 𝑋 and 𝑌 . It is a very strong notion of positive dependence and many of
the other notions of positive dependence follow from it.

Denoting by 𝜉𝑝 = 𝐹−1(𝑝), the 𝑝th quantile of the marginal distribution of 𝑋 , we see that (2.2) will
hold if and only if for all 0 ≤ 𝑢 ≤ 1,

0 ≤ 𝑝 < 𝑞 ≤ 1 ⇒ 𝐻𝜉𝑞 ◦ 𝐻−1
𝜉𝑝
(𝑢) ≤ 𝑢.

In his book, Joe [9] mentions a number of bivariate stochastic ordering relations. One such notion
is that of greater monotone regression (or more SI) dependence, originally considered by Yanagimoto
and Okamoto [24] and later extended and further investigated by Schriever [20], Capéraà and Genest
[5], and Avérous et al. [1], among others.

As discussed in the books by Joe [9] and Nelsen [17], a reasonable way to compare the relative
degree of dependence between two random vectors is through their copulas. We will discuss here the
concept of more SI, a partial order to compare the strength of dependence that may exist between two
bivariate random vectors in the sense of monotone regression dependence (stochastic increasingness).

Suppose we have two pairs of continuous random variables (𝑋1, 𝑌1) and (𝑋2, 𝑌2) with joint cumulative
distribution functions 𝐻𝑖 and marginals 𝐹𝑖 and 𝐺𝑖 for 𝑖 = 1, 2.

Definition 2.3. 𝑌2 is said to be more stochastically increasing in 𝑋2 than 𝑌1 is in 𝑋1, denoted by
(𝑌1 | 𝑋1) ≺SI (𝑌2 | 𝑋2) or 𝐻1 ≺SI 𝐻2, if

0 < 𝑝 ≤ 𝑞 < 1 =⇒ 𝐻2, 𝜉2𝑞 ◦ 𝐻−1
2, 𝜉2𝑝

(𝑢) ≤ 𝐻1, 𝜉1𝑞 ◦ 𝐻−1
1, 𝜉1𝑝

(𝑢), (2.3)

for all 𝑢 ∈ (0, 1), where for 𝑖 = 1, 2, 𝐻𝑖,𝑠 denotes the conditional distribution of 𝑌𝑖 given 𝑋𝑖 = 𝑠, and
𝜉𝑖 𝑝 = 𝐹−1

𝑖 (𝑝) stands for the 𝑝th quantile of the marginal distribution of 𝑋𝑖 .

Obviously, (2.3) implies that 𝑌2 is stochastically increasing in 𝑋2 if 𝑋1 and 𝑌1 are independent. It
also implies that if 𝑌1 is stochastically increasing in 𝑋1, then so is 𝑌2 in 𝑋2; and conversely, if 𝑌2 is
stochastically decreasing in 𝑋2, then so is 𝑌1 in 𝑋1. The above definition of more SI is copula based and

𝐻1 ≺SI 𝐻2 ⇒ 𝐻1 ≺PQD 𝐻2.

Avérous et al. [1] have shown in their paper that in the case of i.i.d. observations, the copula of
any pair of order statistics is independent of the distribution of the parent observations as long as they
are continuous. In a sense, their copula has a distribution-free property. But this is not the case if the
observations are not i.i.d.

The natural question is to see if we can extend the result given in (1.2) to a copula-based positive
dependence ordering. Genest et al. [8] proved that under the given conditions,

(𝑋𝑛:𝑛 | 𝑋1:𝑛) ≺SI (𝑌𝑛:𝑛 |𝑌1:𝑛).
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It has been an open problem to see whether this result can be generalized from the the largest order
statistic to other order statistics. We prove in this paper that for 2 ≤ 𝑖 ≤ 𝑛,

(𝑋𝑖:𝑛 | 𝑋1:𝑛) ≺SI (𝑌𝑖:𝑛 |𝑌1:𝑛).

This implies in particular that

𝜅(𝑋𝑖:𝑛, 𝑋1:𝑛) ≤ 𝜅(𝑌𝑖:𝑛, 𝑌1:𝑛),

where 𝜅(𝑆, 𝑇) represents any concordance measure between random variables 𝑆 and 𝑇 in the sense of
Scarsini [19], for example, Spearman’s rho or Kendall’s tau. A related work to this problem is Dolati
et al. [7].

3. Main results

The proof of our main result relies heavily on the notion of dispersive ordering between two random
variables 𝑋 and 𝑌 , and properties thereof. For completeness, the definition of this concept is recalled
below.

Definition 3.1. A random variable 𝑋 with distribution function 𝐹 is said to be less dispersed than
another variable 𝑌 with distribution 𝐺, written as 𝑋 ≤disp 𝑌 or 𝐹 ≤disp 𝐺, if and only if

𝐹−1(𝑣) − 𝐹−1(𝑢) ≤ 𝐺−1(𝑢) − 𝐺−1(𝑣)

for all 0 < 𝑢 ≤ 𝑣 < 1.

The dispersive order is closely related to the star-ordering which is a partial order to compare the
relative aging or skewness and is defined as below.

Definition 3.2. A random variable 𝑋 with distribution function 𝐹 is said to be star ordered with respect
to another random variable 𝑌 with distribution 𝐺, written as 𝑋 ≤∗ 𝑌 or 𝐹 ≤∗ 𝐺, if and only if

𝐺−1 ◦ 𝐹 (𝑥)
𝑥

is increasing in 𝑥.

For nonnegative random variables, the star order is related to the dispersive order by

𝑋 ≤∗ 𝑌 ⇔ log 𝑋 ≤disp log𝑌 .

The proof of the next lemma, which is a refined version of a result by Deshpande and Kochar [6], on
relation between the star order and the dispersive order, can be found in Kochar and Xu [15].

Lemma 3.1. Let 𝑋 and 𝑌 be two random variables. If 𝑋 ≤∗ 𝑌 and 𝑋 ≤st 𝑌 , then 𝑋 ≤disp 𝑌 .

The following result of Khaledi and Kochar [10] will be used to prove our main theorem.

Lemma 3.2 ([10]). Let 𝑋𝑖 and 𝑌𝑖 be independent random variables with distribution functions 𝐹𝑖 and
𝐺𝑖 , respectively for 𝑖 = 1, 2. Then

𝑋2 ≤disp 𝑋1 and 𝑌1 ≤disp 𝑌2 ⇒ (𝑋2 + 𝑌2) |𝑋2 ≺SI (𝑋1 + 𝑌1) |𝑋1.

The next theorem on dispersive ordering between general spacings which is also of independent
interest, will be used to prove our main result.
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Theorem 3.1. Let 𝑋1, . . . , 𝑋𝑛 be mutually independent exponential random variables with distinct
hazard rates 𝜆1, . . . , 𝜆𝑛 and let 𝑌1, . . . , 𝑌𝑛 be a random sample from the exponential distribution with
hazard rate �̄�. Then for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛,

(𝑌 𝑗:𝑛 − 𝑌𝑖:𝑛) ≤disp (𝑋 𝑗:𝑛 − 𝑋𝑖:𝑛). (3.1)

Proof. Yu [25] proved in Corollary 1 of his paper that for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛,

(𝑌 𝑗:𝑛 − 𝑌𝑖:𝑛) ≤∗ (𝑋 𝑗:𝑛 − 𝑋𝑖:𝑛). (3.2)

and Kochar and Rojo [14] proved in their Corollary 2.1 that

(𝑌 𝑗:𝑛 − 𝑌𝑖:𝑛) ≤st (𝑋 𝑗:𝑛 − 𝑋𝑖:𝑛). (3.3)

Using (3.2) and (3.3), we get (3.1) using Lemma 3.1. �

Xu and Balakrishnan [23] proved a special case of the above result when 𝑖 = 𝑛.
Now, we give the main result of this paper.

Theorem 3.2. Let 𝑋1, . . . , 𝑋𝑛 be mutually independent exponentials with distinct hazard rates
𝜆1, . . . , 𝜆𝑛 and let 𝑌1, . . . , 𝑌𝑛 form a random sample from the exponential distribution with hazard
rate 𝜆 = (∑𝑛

𝑖=1 𝜆𝑖)/𝑛. Then, for 𝑖 ∈ {2, . . . , 𝑛},

(𝑋𝑖:𝑛 | 𝑋1:𝑛) ≺SI (𝑌𝑖:𝑛 |𝑌1:𝑛).

Proof. It follows from Theorem 3.1 above that for 2 ≤ 𝑖 ≤ 𝑛,

(𝑌𝑖:𝑛 − 𝑌1:𝑛) ≤disp (𝑋𝑖:𝑛 − 𝑋1:𝑛). (3.4)

Kochar and Korwar [13] proved that (𝑋𝑖:𝑛 − 𝑋1:𝑛) is independent of 𝑋1:𝑛 and 𝑋1:𝑛
𝑠𝑡
= 𝑌1:𝑛. Similarly,

(𝑌𝑖:𝑛 − 𝑌1:𝑛) is independent of 𝑌1:𝑛. Moreover,

𝑋1:𝑛
st
= 𝑌1:𝑛 .

Now, we can express 𝑋𝑖:𝑛 and 𝑌𝑖:𝑛 as

𝑋𝑖:𝑛 = (𝑋𝑖:𝑛 − 𝑋1:𝑛) + 𝑋1:𝑛 and 𝑌𝑖:𝑛 = (𝑌𝑖:𝑛 − 𝑌1:𝑛) + 𝑌1:𝑛 .

Using (3.4) and the above two equations, it follows from Lemma 3.2 that

(𝑋𝑖:𝑛 | 𝑋1:𝑛) ≺SI (𝑌𝑖:𝑛 |𝑌1:𝑛), for 2 ≤ 𝑖 ≤ 𝑛.

This proves the required result. �

Remark 3.1. Since the copula of the order statistics of a random sample has the distribution-free
property, it is not required that the common hazard rate of 𝑌 ’s is necessarily �̄� in the above theorems.
In fact, the 𝑌 ’s could be a random sample from any continuous distribution.

The above theorem can be extended to the PHR model using the technique used in Genest et al. [8].

Theorem 3.3. Let 𝑋1, . . . , 𝑋𝑛 be independent continuous random variables following the PHR model
with 𝜆1, . . . , 𝜆𝑛 as the proportionality parameters. Let 𝑌1, . . . , 𝑌𝑛 be i.i.d. continuous random variables
with common survival function �̄� �̄�, then

(𝑋𝑖:𝑛 | 𝑋1:𝑛) ≺SI (𝑌𝑖:𝑛 |𝑌1:𝑛) for 2 ≤ 𝑖 ≤ 𝑛.
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Proof. Let 𝑅(𝑡) = − log{�̄� (𝑡)} in the PHR model. Make the monotone transformations 𝑋∗
𝑖 = 𝑅(𝑋𝑖) and

𝑌 ∗
𝑖 = − log{�̄� (𝑌𝑖)}. Then, the transformed variable 𝑋∗

𝑖 has exponential distribution with hazard rate 𝜆𝑖 ,
𝑖 = 1, . . . , 𝑛 and 𝑌 ∗

1 , . . . , 𝑌
∗
𝑖 is a random sample from an exponential distribution with parameter �̄�. Let

𝑋∗
(1) < · · · < 𝑋∗

(𝑛) and𝑌 ∗
(1) < · · · < 𝑌 ∗

(𝑛) be the order statistics corresponding to the new sets of variables.
In view of their invariance by monotone increasing transformations of the margins, the copulas

associated with the pairs (𝑋1:𝑛, 𝑋𝑛:𝑛) and (𝑋∗
1:𝑛, 𝑋

∗
𝑛:𝑛) coincide. Similarly, the pairs (𝑌1:𝑛, 𝑌𝑛:𝑛) and

(𝑌 ∗
1:𝑛, 𝑌

∗
𝑖:𝑛) have the same copula.

Also, since the more SI dependence ordering is copula-based,

(𝑋𝑛:𝑛 | 𝑋1:𝑛) ≺SI (𝑌𝑛:𝑛 |𝑌1:𝑛) ⇔ (𝑋∗
𝑛:𝑛 | 𝑋∗

1:𝑛) ≺SI (𝑌 ∗
𝑛:𝑛 |𝑌 ∗

1:𝑛).

�

Under the conditions of Theorem 3.3, an upper bound on 𝜅(𝑋1:𝑛, 𝑋𝑖:𝑛) is given by 𝜅(𝑌1:𝑛, 𝑌𝑖:𝑛).
Avérous et al. [1] obtained an analytic expression for computing the exact values of the Kendall’s 𝜏
for any pair of order statistics from a random sample from a continuous distribution which in our case
reduces to

𝜏(𝑌1:𝑛, 𝑌𝑖:𝑛) = 1 − 2(𝑛 − 1)
2𝑛 − 1

(
𝑛 − 2
𝑖 − 2

) 𝑛−𝑖∑
𝑠=0

(
𝑛
𝑠

) / (
2𝑛 − 2
𝑛 − 𝑖 + 𝑠

)
.
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References
[1] Avérous, J., Genest, C., & Kochar, S.C. (2005). On dependence structure of order statistics. Journal of Multivariate Analysis

94: 159–171.
[2] Barlow, R.E. & Proschan, F. (1981). Statistical theory of reliability and life testing. Silver Spring, MD: To Begin with.
[3] Bickel, P.J. (1967). Some contributions to the theory of order statistics. In L.M. LeCam & J. Neyman (eds), Fifth Berkeley

symposium on mathematics and statistics, vol. 1. Berkeley, CA: University of California Press, pp. 575–591.
[4] Boland, P.J., Hollander, M., Joag-Dev, K., & Kochar, S.C. (1996). Bivariate dependence properties of order statistics. Journal

of Multivariate Analysis 56: 75–89.
[5] Capéraà, P. & Genest, C. (1990). Concepts de dépendance et ordres stochastiques pour des lois bidimensionnelles. Canadian

Journal of Statistics 18: 315–326.
[6] Deshpandé, J.V. & Kochar, S.C. (1983). Dispersive ordering is the same as tail ordering. Advances in Applied Probability

15: 686–687.
[7] Dolati, A., Genest, C., & Kochar, S.C. (2008). On the dependence between the extreme order statistics in the proportional

hazards model. Journal of Multivariate Analysis 99: 777–786.
[8] Genest, C., Kochar, S., & Xu, M. (2009). On the range of heterogeneous samples. Journal of Multivariate Analysis 100:

1587–1592.
[9] Joe, H. (1997). Multivariate models and dependence concepts. London: Chapman & Hall.

[10] Khaledi, B. & Kochar, S.C. (2005). Dependence orderings for generalized order statistics. Statistics and Probability Letters
73: 357–367.

[11] Kim, S.H. & David, H.A. (1990). On the dependence structure of order statistics and concomitants of order statistics. Journal
of Statistical Planning and Inference 24: 363–368.

[12] Kimeldorf, G. & Sampson, A.R. (1989). A framework for positive dependence. Annals of Institute of Statistical Mathematics
41: 31–45.

[13] Kochar, S.C. & Korwar, R. (1996). Stochastic orders for spacings of heterogeneous exponential random variables. Journal
of Multivariate Analysis 57: 69–83.

[14] Kochar, S.C. & Rojo, J. (1996). Some new results on stochastic comparisons of spacings from heterogeneous exponential
distributions. Journal of Multivariate Analysis 59: 272–281.

[15] Kochar, S.C. & Xu, M. (2012). Some unified results on comparing linear combinations of independent gamma random
variables. Probability in the Engineering and Informational Sciences 26: 393–404.

[16] Lehmann, E.L. (1966). Some concepts of dependence. Annals of Mathematical Statistics 37: 1137–1153.
[17] Nelsen, R.B. (1999). An Introduction to Copulas. Lecture Notes in Statistics No 139. New York: Springer.
[18] Sathe, Y.S. (1988). On the correlation coefficient between the first and the 𝑟 th smallest order statistics based on 𝑛 independent

exponential random variables. Communications in Statistics Theory and Methods 17: 3295–3299.
[19] Scarsini, M. (1984). On measures of concordance. Stochastica 8: 201–218.

Probability in the Engineering and Informational Sciences 735

https://doi.org/10.1017/S0269964822000146 Published online by Cambridge University Press



[20] Schriever, B.F. (1987). An ordering for positive dependence. Annals of Statistics 15: 1208–1214.
[21] Tchen, A.H. (1980). Inequalities for distributions with given marginals. Annals of Probability 8: 814–827.
[22] Tukey, J.W. (1958). A problem of Berkson, and minimum variance orderly estimators,. Annals of Mathematical Statistics

29: 588–592.
[23] Xu, M. & Balakrishnan, N. (2012). On the sample ranges from heterogeneous exponential variables. Journal of Multivariate

Analysis 109: 1–9.
[24] Yanagimoto, T. & Okamoto, M. (1969). Partial orderings of permutations and monotonicity of a rank correlation statistic.

Annals of Institute of Statistical Mathematics 21: 489–506.
[25] Yu, Y. (2021). On stochastic comparisons of order statistics from heterogeneous exponential samples. Probability in

Engineering and Information Sciences. 35: 532–537.

Cite this article: Kochar S (2023). Dependence comparisons of order statistics in the proportional hazards model. Probability in the Engineering
and Informational Sciences https://doi.org/10.1017/S0269964822000146

S. Kochar736

37 , 730–736.

https://doi.org/10.1017/S0269964822000146 Published online by Cambridge University Press


