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Let Xλ1 , Xλ2 , . . . , Xλn be independent non negative random variables with Xλi ∼
F (λit), i = 1, . . . , n, where λi > 0, i = 1, . . . , n and F is an absolutely continuous
distribution. It is shown that, under some conditions, one largest order statistic Xλ

n:n is
smaller than another one Xθ

n:n according to likelihood ratio ordering. Furthermore, we
apply these results when F is a generalized gamma distribution which includes Weibull,
gamma and exponential random variables as special cases.

Keywords Likelihood ratio order; Reverse hazard rate order; Majorization; Order
statistics

Mathematics Subject Classification 62G30; 60E15; 60K10

1. Introduction

Let F be the distribution function of some non negative random variable X . Then the
independent random variables Xλ1 , Xλ2 , . . . , Xλn follow the scale model if there exists
λ1 > 0, . . . , λn > 0 such that, Fi(t) = F (λit) for i = 1, . . . , n. F is called the baseline
distribution and the λ′

is are the scale parameters. Recently, Khaledi et al. (2011) studied
conditions under which series and parallel systems consisting of components with lifetimes
from the scale family of distributions are ordered in the hazard rate and the reverse hazard
rate orderings, respectively. In this article we revisit this problem and broaden the scope of
their results to likelihood ratio ordering, which is stronger than the other orderings.

There is an extensive literature on stochastic orderings among order statistics and
spacings when the observations follow the exponential distribution with different scale
parameters; see for instance, Kochar and Kirmani (1996), Dykstra et al. (1997), Bon and
Păltănea (1999), Khaledi and Kochar (2000), Kochar and Xu (2009), Joo and Mi (2010),
Torrado et al. (2010), Torrado and Lillo (2013), and the references therein. Also see a
review article by Kochar (2012) on this topic. A natural way to extend these works is to
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consider the scale model since it includes the exponential distribution, among others. The
scale model, also known in the literature as the proportional random variables (PRV) model,
is of theoretical as well as practical importance in various fields of probability and statistics
and has been investigated in Pledger and Proschan (1971), Hu (1995), and Torrado and
Veerman (2012), among others.

In this article, we focus on stochastic orders to compare the magnitudes of two largest
order statistics from the scale model when one set of scale parameters majorizes the other.
The new results obtained here are applied when the baseline distributions are generalized
gamma distributions. Recall that a random variable X has a generalized gamma distribution,
denoted by X ∼ GG(β, α), when its density function has the following form

f (t) = β

�( α
β

)
xα−1e−x

β

, t > 0,

where β, α > 0 are the shapes parameters. The importance of this distribution lies in its
flexibility in describing lifetime distributions ensuring their applications in survival analysis
and reliability theory. It is of great interest in several areas of application; see, for example,
Manning et al. (2005), Ali et al. (2008), and Chen et al. (2012). It is well known that
generalized gamma distribution includes many important distributions like exponential,
Weibull and gamma as special cases. We also present some new results which strengthen
some of those established earlier in the literature by Zhao (2011), Misra and Misra (2013),
and Zhao and Balakrishnan (In press) for gamma distributions and Torrado and Kochar
(2015) for Weibull distributions. Further results on these subjects are contained in, e.g.,
Lihong and Xinsheng (2005), Khaledi and Kochar (2007), Zhao and Balakrishnan (2011),
Balakrishnan and Zhao (2013), and Fang and Zhang (2013). It may be mentioned that
Gupta et al. (2006) considered monotonicity of the hazard rate and the reverse hazard rates
of series and parallel systems when the components are dependent.

The rest of this article is organized as follows. In Sec. 2, we introduce the required
definitions. Sections 3 and 4 are devoted to investigate the reverse hazard rate and likelihood
ratio orderings of largest order statistics considering the general scale model, respectively.

2. Basic Definitions

In this section, we review some definitions and well-known notions of majorization concepts
and stochastic orders. Throughout this article increasing and non decreasing will be used
synonymously as decreasing and non increasing.

We focus attention in this article on non negative random variables. We shall also be
using the concept of majorization in our discussion. Let {x(1), x(2), . . . , x(n)} denote the
increasing arrangement of the components of the vector x = (x1, x2, . . . , xn).

Definition 2.1 The vector x is said to be majorized by the vector y, denoted by x
m≤ y, if

j∑
i=1

x(i) ≥
j∑
i=1

y(i), for j = 1, . . . , n− 1 and
n∑
i=1

x(i) =
n∑
i=1

y(i).

Functions that preserve the ordering of majorization are said to be Schur-convex, as
one can see in the following definition.
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Definition 2.2 A real valued function ϕ defined on a set A ∈ �n is said to be Schur-convex
(Schur-concave) on A if

x
m≤ y on A ⇒ ϕ(x) ≤ (≥)ϕ( y).

Replacing the equality in Definition 2.1 by a corresponding inequality leads to the
concept of weak majorization. One can majorize from above or below. The following
definition addresses majorization from above. It is also called supermajorization.

Definition 2.3 The vector x is said to be weakly majorized by the vector y, denoted by

x
w≤ y, if

j∑
i=1

x(i) ≥
j∑
i=1

y(i), for j = 1, . . . , n.

It is known that x
m≤ y ⇒ x

w≤ y. The converse is, however, not true. For extensive and
comprehensive details on the theory of majorization orders and their applications, please
refer to the book of Marshall et al. (2011).

Let X and Y be univariate random variables with cumulative distribution functions
(cdf’s) F and G, survival functions F̄ (= 1 − F ) and Ḡ (= 1 −G), pdf’s f and g, hazard
rate functions hF

(= f/ F̄
)

and hG
(= g/ Ḡ

)
, and reverse hazard rate functions rF (= f/F )

and rG (= g/G), respectively. The following definitions introduce stochastic orders, which
are considered in this article, to compare the magnitudes of two random variables. For more
details on stochastic comparisons, see Shaked and Shanthikumar (2007).

Definition 2.4 We say that X is smaller than Y in the:

• usual stochastic order if F̄ (t) ≤ Ḡ(t) for all t and in this case, we write X ≤st Y ;
• reverse hazard rate order ifG(t)/F (t) is increasing in t for which the ratio is well defined,

or if rF (t) ≤ rG(t), for all t, denoted by X ≤rh Y ; and
• likelihood ratio order if g(t)/f (t) is increasing in t for which the ratio is well defined, for

all t, denoted by X ≤lr Y .

3. Reverse Hazard Rate Ordering Results

Let Xλ1 , Xλ2 , . . . , Xλn be independent non negative random variables with Xλi ∼ F (λit),
i = 1, . . . , n, whereλi > 0, i = 1, . . . , n and F is an absolutely continuous distribution. Let
f , h, and r be the density, hazard rate and the reverse hazard rate functions of F, respectively.
The distribution function ofXλn:n, the largest order statistic formed fromXλ1 , Xλ2 , . . . , Xλn
is

Fλn:n(t) =
n∏
i=1

F (λit),
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and its reverse hazard rate function is

rλn:n(t) =
n∑
i=1

λir(λit). (1)

Khaledi et al. (2011) proved the following result on comparing two parallel systems
when the underlying random variables follow the scale model and their scale parameters
majorize each other.

Theorem 3.1 Let Xλ1 , . . . , Xλn be independent non negative random variables with
Xλi ∼ F (λit), i = 1, . . . , n, where λi > 0, i = 1, . . . , n and F is an absolutely contin-
uous distribution. Let r be the reverse hazard rate function of F, respectively. If t2r ′(t) is
increasing in t, then

(λ1, . . . , λn)
m≤ (θ1, . . . , θn) ⇒ Xλn:n ≤rh X

θ
n:n.

In the next theorem we extend the above result to the case when the two sets of scale
parameters weakly majorize each other instead of usual majorization.

Theorem 3.2 Let Xλ1 , Xλ2 , . . . , Xλn be independent random variables with Xλi ∼ F (λit)
where λi > 0, i = 1, . . . , n. If tr(t) is decreasing in t and t2r ′(t) is increasing in t, then

(λ1, . . . , λn)
w≤ (θ1, . . . , θn) ⇒ Xλn:n ≤rh X

θ
n:n.

Proof. Fix t > 0. Then the reverse hazard rate of Xλn:n as given by (1) can be rewritten as

rλn:n(t) =
n∑
i=1

λir(λit) = 1

t

n∑
i=1

ψ(λit),

where ψ(t) = tr(t), t ≥ 0. From Theorem A.8 of (Marshall et al., 2011, p. 59) it suffices
to show that, for each t > 0, rλn:n(t) is decreasing in each λi , i = 1, . . . , n, and is a Schur-
convex function of (λ1, . . . , λn). By the assumptions, tr(t) is decreasing in t, then the
reverse hazard rate function of Xn:n is decreasing in each λi .

Now, from Proposition C.1 of (Marshall et al., 2011, p. 64), the convexity of ψ(t) is
needed to prove Schur-convexity of rλn:n(t). Note that the assumption t2r ′(t) is increasing
in t is equivalent to r(t) + tr ′(t) is increasing in t since

[
t2r ′(t)

]′ = t
(
2r ′(t) + tr ′′(t)

) = t
[
r(t) + tr ′(t)

]′
,

and r(t) + tr ′(t) is increasing in t is equivalent to tr(t) is convex since

[tr(t)]′ = r(t) + tr ′(t).

Hence, ψ(t) is convex. �

Note that the conditions of Theorem 3.2 are satisfied by the generalized gamma
distribution with parameters β ≤ 1 and α > 0 as Khaledi et al. (2011) proved that t2r ′(t)
is an increasing function for X ∼ GG(β, α), when β ≤ 1 and α > 0 . It is easy to verify
that tr(t) is a decreasing function of t when β, α > 0.
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As one natural application, Theorem 3.2 guarantees that, for parallel systems of compo-
nents having independent generalized gamma distributed lifetimes with parameters β ≤ 1
and α > 0, the weakly majorized scale parameter vector leads to a larger system’s lifetime
in the sense of the reverse hazard rate order.

The generalized gamma distribution includes many important distributions like expo-
nential (β = α = 1), Weibull (β = α), and gamma ( β = 1) as special cases. Misra and
Misra (2013) proved that in the case of gamma distribution with density function

f (t) = λαi

�(α)
tα−1e−λi t , t > 0,

when α > 0 and n ≥ 2,

(λ1, . . . , λn)
w≤ (θ1, . . . , θn) ⇒ Xλn:n ≤rh X

θ
n:n. (2)

Note that, when 0 < α ≤ 1, (2) can be seen as a particular case of Theorem 3.2 since
gamma distribution is a particular case of generalized gamma distribution when β = 1.

Recently, Torrado and Kochar (2015) established, in Theorem 4.1, the reverse hazard
rate ordering between parallel systems based on two sets of heterogeneous Weibull random
variables with a common shape parameter and with scale parameters which are ordered
according to a majorization order when the common shape parameter α satisfies 0 < α ≤ 1.
So Theorem 4.1 in Torrado and Kochar (2015) can be seen as a particular case of Theorem
3.2 because Weibull distribution is a particular case of generalized gamma distribution
when β = α.

4. Likelihood Ratio Ordering Results

In this section, we investigate whether the result of Theorem 3.2 can be strengthened from
reverse hazard rate ordering to likelihood ratio ordering. First, we consider the case when
n = 2 and the scale parameters of the scale model are ordered according to a weekly
majorization order.

Theorem 4.1 Let Xλ1 , Xλ be independent non negative random variables with Xλ1 ∼
F (λ1t) andXλ ∼ F (λt), where λ1, λ > 0 and F is an absolutely continuous distribution. Let
Yλ∗

1
, Yλ be independent non negative random variables with Yλ∗

1
∼ F (λ∗

1t) and Yλ ∼ F (λt),
where λ∗

1, λ > 0. Let r be the reverse hazard rate function of F. Assume tr(t) and tr ′(t)/r(t)
are both decreasing in t. Suppose λ∗

1 = min(λ, λ1, λ
∗
1), then

(λ1, λ)
w≤ (
λ∗

1, λ
) ⇒ r∗

2:2(t)

r2:2(t)
is increasing in t.

Proof. Let

φ(t) = r∗
2:2(t)

r2:2(t)
= λ∗

1r(λ
∗
1t) + λr(λt)

λ1r(λ1t) + λr(λt)
,

and its derivative for t > 0 is

φ′(t)
sign= t3

((
λ∗

1

)2
r ′(λ∗

1t) + λ2r ′(λt)
)

(λ1r(λ1t) + λr(λt))

−t3 (
λ∗

1r(λ
∗
1t) + λr(λt)

) (
λ2

1r
′(λ1t) + λ2r ′(λt)

)



Stochastic Comparisons of Largest Order Statistics 4137

= λ1λ
∗
1t

3 (
λ∗

1r
′(λ∗

1t)r(λ1t) − λ1r(λ
∗
1t)r

′(λ1t)
)

+λ1λt
3
(
λr ′(λt)r(λ1t) − λ1r(λt)r

′(λ1t)
)

+λλ∗
1t

3
(
λ∗

1r
′(λ∗

1t)r(λt) − λr(λ∗
1t)r

′(λt)
)

= λ1λ
∗
1t

2r(λ∗
1t)r(λ1t)

(
λ∗

1t
r ′(λ∗

1t)

r(λ∗
1t)

− λ1t
r ′(λ1t)

r(λ1t)

)

+λ1λt
2r(λt)r(λ1t)

(
λt
r ′(λt)
r(λt)

− λ1t
r ′(λ1t)

r(λ1t)

)

+λλ∗
1t

2r(λ∗
1t)r(λt)

(
λ∗

1t
r ′(λ∗

1t)

r(λ∗
1t)

− λt
r ′(λt)
r(λt)

)

= ψ(λ∗
1t)ψ(λ1t)

(−η(λ∗
1t) + η(λ1t)

) + ψ(λt)ψ(λ1t) (−η(λt) + η(λ1t))

+ψ(λ∗
1t)ψ(λt)

(−η(λ∗
1t) + η(λt)

)
,

where

ψ (t) = tr(t) and η (t) = −t r
′(t)
r(t)

.

Note that ψ (t) ≥ 0 for all t ≥ 0 and η (t) ≥ 0 since r ′(t) ≤ 0 because tr(t) is a decreasing
function. By the assumptions, we know that ψ (t) is decreasing and η (t) is increasing in

t. If λ∗
1 = min(λ, λ1, λ

∗
1) and (λ1, λ)

w≤ (
λ∗

1, λ
)
, then λ∗

1 ≤ λ ≤ λ1 or λ∗
1 ≤ λ1 ≤ λ. When

λ∗
1 ≤ λ ≤ λ1, we have

φ′(t)
sign= ψ(λ∗

1t)ψ(λ1t)
(−η(λ∗

1t) + η(λ1t)
) + ψ(λt)ψ(λ1t) (−η(λt) + η(λ1t))

+ψ(λ∗
1t)ψ(λt)

(−η(λ∗
1t) + η(λt)

)
≥ 0,

since η
(
λ∗

1t
) ≤ η (λt) ≤ η (λ1t). When λ∗

1 ≤ λ1 ≤ λ, we get

φ′(t) ≥ ψ(λt)ψ(λ1t)
(−η(λ∗

1t) + η(λ1t)
) + ψ(λt)ψ(λ1t) (−η(λt) + η(λ1t))

+ψ(λ1t)ψ(λt)
(−η(λ∗

1t) + η(λt)
)

= 2ψ(λt)ψ(λ1t)
(−η(λ∗

1t) + η(λ1t)
) ≥ 0.

Therefore r∗
2:2(t)/r2:2(t) is increasing in t. �

In the next result, we extend Theorem 3.2 from reverse hazard rate ordering to likelihood
ratio ordering for n = 2.

Theorem 4.2 Let Xλ1 , Xλ be independent non negative random variables with Xλ1 ∼
F (λ1t) andXλ ∼ F (λt), where λ1, λ > 0 and F is an absolutely continuous distribution. Let
r be the reverse hazard rate function of F. Let Yλ∗

1
, Yλ be independent non negative random

variables withYλ∗
1
∼ F (λ∗

1t) andYλ ∼ F (λt), where λ∗
1, λ > 0. Assume tr(t) and tr ′(t)/r(t)

are both decreasing in t and t2r ′(t) is increasing in t. Suppose λ∗
1 = min(λ, λ1, λ

∗
1), then

(λ1, λ)
w≤ (
λ∗

1, λ
) ⇒ X2:2 ≤lr Y2:2.
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Proof. From Theorem 4.1, we know that r∗
2:2(t)/r2:2(t) is increasing in t under the given

assumptions. By Theorem 3.2, (λ1, λ)
w≤ (
λ∗

1, λ
)

implies X2:2 ≤rh Y2:2. Thus, the required
result follows from Theorem 1.C.4 of Shaked and Shanthikumar (2007). �

The conditions of Theorem 4.2 hold when the baseline distribution in the scale model
is GG(β, α) with parameters α ≤ β ≤ 1. We know from Khaledi et al. (2011) that for
α, β > 0, the function tr(t) is decreasing in t and for β ≤ 1 and α > 0 , the function t2r ′(t)
is increasing in t. In Lemma 4.1, we show that the function tr ′(t)/r(t) is decreasing in t
when α ≤ β.

Lemma 4.1 Let X ∼ GG(β, α), α ≤ β, with reverse hazard rate r(t), then tr ′(t)/r(t) is a
decreasing function.

Proof. The reverse hazard rate of GG(β, α) is

r(t) = tα−1e−t
β

∫ t
0 x

α−1e−xβ dx
.

From (A.21) in Khaledi et al. (2011), we know

t
r ′(t)
r(t)

= α − 1 − βtβ − tr(t). (6)

Differentiating with respect to t, we get

[
t
r ′(t)
r(t)

]′
= −β2tβ−1 − r(t) − tr ′(t).

Note that, in general, the derivative of any reverse hazard rate with respect to t is

r ′(t) = f ′(t)
F (t)

− r2(t). (7)

Combining these observations, we have

[
t
r ′(t)
r(t)

]′
= −β2tβ−1 − r(t) − t

f ′(t)
F (t)

+ tr2(t)

= −β2tβ−1 + r(t)

(
tr(t) − 1 − t

f ′(t)
f (t)

)
.

From Khaledi et al. (2011), we know that tr(t) is a decreasing function for β, α > 0 and
also that limt→0 tr(t) = α and limt→∞ tr(t) = 0, then tr(t) ≤ α for all t > 0. Then,

[
t
r ′(t)
r(t)

]′
≤ −β2tβ−1 + r(t)

(
α − 1 − t

f ′(t)
f (t)

)
. (8)

From (6) and (7), we get

t
r ′(t)
r(t)

= t

r(t)

(
f ′(t)
F (t)

− r2(t)

)
= t

(
f ′(t)
f (t)

− r(t)

)
,
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then

t
f ′(t)
f (t)

= α − 1 − βtβ − tr(t) + tr(t)

= α − 1 − βtβ.

By replacing the above expression in (8), we have

[
t
r ′(t)
r(t)

]′
≤ −β2tβ−1 + r(t)

(
α − 1 − (

α − 1 − βtβ
))

= −β2tβ−1 + βtβr(t)

= βtβ
(

−β
t

+ r(t)

)
≤ 0

since tr(t) ≤ α ≤ β. �

Theorem 4.2 says that the lifetime of a parallel system consisting of two types of gen-
eralized gamma components with parameters α ≤ β ≤ 1 is stochastically larger according
to likelihood ratio ordering when the scale parameters are more dispersed according to
weakly majorization.

Note that, when 0 < α ≤ 1, Theorem 3.4 in Zhao (2011) can be seen as a particular
case of Theorem 4.2 since gamma distribution is a particular case of generalized gamma
distribution when β = 1.

As an immediate consequence of Theorem 4.2, we have the following result which
provides an upper bound of two random variables from a scale model.

Corollary 4.1 Let Xλ1 , Xλ2 be independent non negative random variables with Xλi ∼
F (λit) for i = 1, 2. Let Y1, Y2 be independent non negative random variables with a com-
mon distribution Yi ∼ F (λt) for i = 1, 2. Assume tr(t) and tr ′(t)/r(t) are both decreasing
in t and t2r ′(t) is increasing in t. Suppose λ ≤ min(λ1, λ2) , then

λ ≤ λ1 + λ2

2
⇒ X2:2 ≤lr Y2:2.

Next, we extend the study of likelihood ratio ordering between largest order statistics
from the two-variable case to multiple-outlier scale models.

Theorem 4.3 Let X1, . . . , Xn be independent non negative random variables such that
Xi ∼ F (λ1t) for i = 1, . . . , p andXj ∼ F (λt) for j = p+1, . . . , n, withλ1, λ > 0 and F is
an absolutely continuous distribution. LetY1, . . . , Yn be n independent non negative random
variables with Yi ∼ F (λ∗

1t) for i = 1, . . . , p and Yj ∼ F (λt) for j = p + 1, . . . , n, with
λ∗

1, λ > 0. Let r be the reverse hazard rate function of F. Assume tr(t) and tr ′(t)/r(t) are
both decreasing in t. Suppose λ∗

1 = min(λ, λ1, λ
∗
1), then

(λ1, . . . , λ1︸ ︷︷ ︸
p

, λ, . . . , λ︸ ︷︷ ︸
q

)
w≤ (λ∗

1, . . . , λ
∗
1︸ ︷︷ ︸

p

, λ, . . . , λ︸ ︷︷ ︸
q

) ⇒ r∗
n:n(t)

rn:n(t)
is increasing in t,

where q = n− p.
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Proof. From (3.1) we get the reverse hazard rate function of Xn:n:

rn:n(t) = pλ1r(λ1t) + qλr(λt),

where p + q = n. Let

φ(t) = r∗
n:n(t)

rn:n(t)
= pλ∗

1r(λ
∗
1t) + qλr(λt)

pλ1r(λ1t) + qλr(λt)
.

On differentiating φ(t) with respect to t, we get

φ′(t)
sign= t3

(
p

(
λ∗

1

)2
r ′(λ∗

1t) + qλ2r ′(λt)
)

(pλ1r(λ1t) + qλr(λt))

−t3 (
pλ∗

1r(λ
∗
1t) + qλr(λt)

) (
pλ2

1r
′(λ1t) + qλ2r ′(λt)

)
= p2λ1λ

∗
1t

3
(
λ∗

1r
′(λ∗

1t)r(λ1t) − λ1r(λ
∗
1t)r

′(λ1t)
)

+pqλ1λt
3
(
λr ′(λt)r(λ1t) − λ1r(λt)r

′(λ1t)
)

+pqλλ∗
1t

3
(
λ∗

1r
′(λ∗

1t)r(λt) − λr(λ∗
1t)r

′(λt)
)

= p2λ1λ
∗
1t

2r(λ∗
1t)r(λ1t)

(
λ∗

1t
r ′(λ∗

1t)

r(λ∗
1t)

− λ1t
r ′(λ1t)

r(λ1t)

)

+pqλ1λt
2r(λt)r(λ1t)

(
λt
r ′(λt)
r(λt)

− λ1t
r ′(λ1t)

r(λ1t)

)

+pqλλ∗
1t

2r(λ∗
1t)r(λt)

(
λ∗

1t
r ′(λ∗

1t)

r(λ∗
1t)

− λt
r ′(λt)
r(λt)

)

= p2ψ(λ∗
1t)ψ(λ1t)

(−η(λ∗
1t) + η(λ1t)

) + pqψ(λt)ψ(λ1t) (−η(λt) + η(λ1t))

+pqψ(λ∗
1t)ψ(λt)

(−η(λ∗
1t) + η(λt)

)
,

where

ψ (t) = tr(t) and η (t) = −t r
′(t)
r(t)

.

Note that ψ (t) , η (t) ≥ 0 for all t ≥ 0. By the assumptions, we know that ψ (t) is de-

creasing and η (t) is increasing in t. If λ∗
1 = min(λ, λ1, λ

∗
1) and (λ1, . . . , λ1, λ, . . . , λ)

w≤(
λ∗

1, . . . , λ
∗
1, λ, . . . , λ

)
, then λ∗

1 ≤ λ ≤ λ1 or λ∗
1 ≤ λ1 ≤ λ. When λ∗

1 ≤ λ ≤ λ1, it is easy to
check that φ′(t) ≥ 0 since η

(
λ∗

1t
) ≤ η (λt) ≤ η (λ1t). When λ∗

1 ≤ λ1 ≤ λ, we get

φ′(t) ≥ p2ψ(λt)ψ(λ1t)
(−η(λ∗

1t) + η(λ1t)
) + pqψ(λt)ψ(λ1t) (−η(λt) + η(λ1t))

+pqψ(λ1t)ψ(λt)
(−η(λ∗

1t) + η(λt)
)

= npψ(λt)ψ(λ1t)
(−η(λ∗

1t) + η(λ1t)
) ≥ 0.

Therefore, r∗
n:n(t)/rn:n(t) is increasing in t. �

In the next result, we extend Theorem 4.2 from the two-variable case to multiple-outlier
scale models.
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Theorem 4.4 Let X1, . . . , Xn be independent non negative random variables such that
Xi ∼ F (λ1t) for i = 1, . . . , p and Xj ∼ F (λt) for j = p + 1, . . . , n, with λ1, λ > 0 and
F is an absolutely continuous distribution. Let Y1, . . . , Yn be n independent non negative
random variables with Yi ∼ F (λ∗

1t) for i = 1, . . . , p and Yj ∼ F (λt) for j = p+1, . . . , n,
with λ∗

1, λ > 0. Let r be the reverse hazard rate function of F. Assume tr(t) and tr ′(t)/r(t)
are both decreasing in t and t2r ′(t) is increasing in t. Suppose λ∗

1 = min(λ, λ1, λ
∗
1), then

(λ1, . . . , λ1︸ ︷︷ ︸
p

, λ, . . . , λ︸ ︷︷ ︸
q

)
w≤ (λ∗

1, . . . , λ
∗
1︸ ︷︷ ︸

p

, λ, . . . , λ︸ ︷︷ ︸
q

) ⇒ Xn:n ≤lr Yn:n.

Proof. From Theorem 4.3, we know that r∗
n:n(t)/rn:n(t) is increasing in t when tr(t) and

tr ′(t)/r(t) are both decreasing in t. Since (λ1, . . . , λ1, λ, . . . , λ)
w≤ (
λ∗

1, . . . , λ
∗
1, λ, . . . , λ

)
and t2r ′(t) is increasing in t , thenXn:n ≤rh Yn:n from Theorem 3.2. Thus the required result
follows from Theorem 1.C.4 in Shaked and Shanthikumar (2007). �

Note that, when 0 < α ≤ 1, Theorem 3.1 in Zhao and Balakrishnan (In press) can be
seen as a particular case of Theorem 4.4 when λ∗

1 ≤ λ1 ≤ λ since gamma distribution is a
particular case of generalized gamma distribution when β = 1.

Next, we establish the analog of Theorem 4.4 when both the baseline distributions and
the scale parameters are different in the multiple-outlier scale models.

Theorem 4.5 Let X1, . . . , Xn be independent non negative random variables such that
Xi ∼ F (λ1t) for i = 1, . . . , p andXj ∼ G(λt) for j = p+1, . . . , n, with λ1, λ > 0 and F
is an absolutely continuous distribution. LetX∗

1, . . . , X
∗
n be n independent non negative ran-

dom variables with X∗
i ∼ F (λ∗

1t) for i = 1, . . . , p and X∗
j ∼ G(λt) for j = p + 1, . . . , n,

with λ∗
1, λ > 0. Let rF and rG be the reverse hazard rate functions of F and G, respectively.

Assume trF (t) and tr ′
F (t)/rF (t) are both decreasing in t. Suppose rF (t)/rG(t) is increasing

in t, then

λ∗
1 = min(λ, λ1, λ

∗
1) ⇒ Xn:n ≤lr X

∗
n:n.

Proof. From (3.1) we get the reverse hazard rate function of Xn:n:

rn:n(t) = pλ1rF (λ1t) + qλrG(λt),

where p + q = n. Similarly the reverse hazard rate function of X∗
n:n is

r∗
n:n(t) = pλ∗

1rF (λ1t) + qλrG(λt).

Observe that Xj
st= X∗

j for j = p + 1, . . . , n. By the assumptions, we know that trF (t) is
decreasing in t and λ∗

1 ≤ λ1, then we have Xn:n ≤rh X
∗
n:n since rn:n(t) ≤ r∗

n:n(t) for all t.
From Theorem 1.C.4 in Shaked and Shanthikumar (2007), it is enough to prove that the
ratio of their reverse hazard rate functions is increasing, i.e., we need to show that the
function

φ(t) = r∗
n:n(t)

rn:n(t)
= pλ∗

1rF (λ∗
1t) + qλrG(λt)

pλ1rF (λ1t) + qλrG(λt)
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is increasing in t. On differentiating φ(t) with respect to t, we get

φ′(t)
sign= t3

(
p

(
λ∗

1

)2
r ′
F (λ∗

1t) + qλ2r ′
G(λt)

)
(pλ1rF (λ1t) + qλrG(λt))

−t3 (
pλ∗

1rF (λ∗
1t) + qλrG(λt)

) (
pλ2

1r
′
F (λ1t) + qλ2r ′

G(λt)
)
.

Let us denote:

ψF (t) = trF (t), ηF (t) = −t r
′
F (t)

rF (t)
, ψG (t) = trG(t) and ηG (t) = −t r

′
G(t)

rG(t)
,

then the derivative of φ(t) can be rewritten as

φ′(t)
sign= p2ψF (λ∗

1t)ψF (λ1t)
(−ηF (λ∗

1t) + ηF (λ1t)
)

+pqψG(λt)ψF (λ1t) (−ηG(λt) + ηF (λ1t))

+pqψF (λ∗
1t)ψG(λt)

(−ηF (λ∗
1t) + ηG(λt)

)
.

The assumption rF (t)/rG(t) is increasing in t is equivalent to ηF (t) ≤ ηG (t) for all t. In
addition, we know that ηF (t) is increasing in t and λ∗

1 ≤ λ then ηF (λ∗
1t) ≤ ηF (λt) ≤ ηG(λt)

for all t. By the assumptions, we know that ψF (t) is decreasing in t and λ∗
1 ≤ λ1, then

φ′(t) ≥ p2ψF (λ∗
1t)ψF (λ1t)

(−ηF (λ∗
1t) + ηF (λ1t)

)
+pqψG(λt)ψF (λ1t)

(−ηF (λ∗
1t) + ηF (λ1t)

)
= pψF (λ1t)

(−ηF (λ∗
1t) + ηF (λ1t)

) (
pψF (λ∗

1t) + qψG(λt)
) ≥ 0,

since ηF (t) is increasing in t. Therefore, r∗
n:n(t)/rn:n(t) is increasing in t. �
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