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ABSTRACT

Independent random variables X;, ,...,X; are said to belong to the scale family of
distributions if X, ~ F(4;x), for i=1,...,n, where F is an absolutely continuous distribution
function with hazard rate r and reverse hazard rate #. We show that the hazard rate
(reverse hazard rate) of a series (parallel) system consisting of components with
lifetimes X;,,...,X;, is Schur concave (convex) with respect to the vector 4, if x21'(x)
(x27(x)) is decreasing (increasing). We also show that if xr(x) is increasing in x, then the
survival function of the parallel system is increasing in the vector A with respect to
p-larger order, an order weaker than majorization. We prove that all these new results
hold for the scaled generalized gamma family as well as the power-generalized Weibull
family of distributions. We also show that in the case of generalized gamma and power
generalized Weibull distribution, under some conditions on the shape parameters, the
vector of order statistics corresponding to X;,’s is stochastically increasing in the vector
J with respect to majorization thus generalizing the main results in Sun and Zhang
(2005) and Khaledi and Kochar (2006).

© 2010 Published by Elsevier B.V.

1. Introduction

Independent random variables X; ,...,X, are said to belong to the scale family of distributions if X; ~ F(4;x), for
i=1,...,n, where F is an absolutely continuous distribution function with density function f. It means that the random
variables 21X),,...,4x,X;, are independent and identically distributed with common c.d.f. F. F is called the baseline
distribution and the A;’s are the scale parameters. It includes many important distributions like normal, exponential,
Weibull, gamma as special cases. The scale model is of theoretical as well as practical importance in various fields of
probability and statistics.

There is an extensive literature on stochastic orderings among order statistics when the observations follow the
exponential distribution with different scale parameters. Important contributions in this area have been made by Pledger
and Proschan (1971), Proschan and Sethuraman (1976), Boland et al. (1994 a, b), Dykstra et al. (1997), Khaledi and Kochar
(2000), Bon and Paltanea (2006), among others. Also see a review paper by Kochar and Xu (2007) on this topic. Sun and
Zhang (2005) considered the case of gamma distribution whereas Khaledi and Kochar (2006) considered the case of
Weibull distribution.

Pledger and Proschan (1971) and Hu (1995) considered the general scale model and obtained stochastic ordering results
between two vectors of order statistics when one set of scale parameters majorizes the other. In this paper we revisit this
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problem and obtain some new results and apply them when the baseline distributions are generalized gamma and power-
generalized Weibull distributions. Our results extend some of the existing results.
We first introduce some notations and give definitions. Throughout this paper increasing means nondecreasing and
decreasing means nonincreasing; and we shall be assuming that all distributions under study are absolutely continuous.
Let X and Y be univariate random variables with distribution functions F and G, survival functions F and G, hazard rate
functions rr and rg, reverse hazard rate functions ¢ and 7, respectively.

Definition 1.1.

(a) X is said to be stochastically smaller than Y (denoted by X < . Y) if F(x) < G(x) for all x. This is equivalent to saying that
Eg(X) < Eg(Y) for any increasing function g for which expectations exist.

(b) X is said to be smaller than Y according to hazard rate ordering (denoted by X < ,,Y) if re(x) > rg(x) for all x.

(c) X is said to be smaller than Y according to reverse hazard rate ordering (denoted by X < ,;,Y) if Fr(x) < Fs(x) for all x.

(d) X is said to be smaller than Y according to dispersive ordering (denoted by X < 45, Y) if G™'(v)~-G~(u) = F' (v)~F (),
forO<u<v<l1.

Definition 1.2. A random vector X=(Xj,...,X;) is said to be smaller than another random vector Y=(Y4,...,Y;;) according to

t
multivariate stochastic ordering (denoted by XsﬁY) if h(X) < s+h(Y) for all increasing functions h.

It is easy to see that multivariate stochastic ordering implies component-wise stochastic ordering. For more details see
Chapters 1 and 6 of Shaked and Shanthikumar (2007).
Next we introduce the notion of majorization which is one of the basic tools in establishing various inequalities in
statistics and probability.

Definition 1.3. Let {x;, < --- <X} denote the increasing arrangement of the components of a vector X=(xy,....xp). A
vector X is said to majorize another vectory (written x=y) if > _ x4 < 34 _, yg forj=1,...,n—1and 37_ ; X = Si_ 1 Y-

Functions that preserve the majorization ordering are called Schur-convex functions. Marshall and Olkin (1979) provides
extensive and comprehensive details on the theory of majorization and its applications in statistics.
In the following, the ith order statistic corresponding to a sample of size n from a random variable X is denoted by X;.,,
i=1,...,n. Pledger and Proschan (1971) proved the following general result for the scale model.

Theorem 1.1. Let Xy,...,.Xy; Y1,...,Yn be independent nonnegative random variables with X; ~ F(2;x), Y; ~ F(u;x), 2; >0, u; > 0,
i=1,..., n where F is an absolutely continuous distribution. If r(x), the hazard rate of F, is decreasing, then

()“1v cee ,)vn)g(/l], s wun):xk:n = stYk:n
for k=1,...,n.

Let G(o,,A) and W(x,4) denote gamma and Weibull random variables with shape parameter « and scale parameter A. For
these scale models, Sun and Zhang (2005) and Khaledi and Kochar (2006), respectively, extended the above result from
component-wise stochastic ordering to multivariate stochastic ordering. They proved the following theorem.

Theorem 1.2. Let (X, ..., Xy) and (Y1, ...,Yn) be two independent random vectors with

(a) X; ~W(o,4y) and Y; ~ W(a,uy), i= 1,...,n or
(b) Xi ~ G(o,4y) and Y; ~ G(a, ), i= 1,...,n.
Then forO <o <1,
2R = K Xe) = (Vs Yon). 1.1
Hu (1995) also considered the general scale problem and proved the following result.

Theorem 1.3. Let Xy,...,Xy; Yi,....Yn be independent nonnegative random variables with X; ~ F(4;x), Y; ~ F(u;x), where 4; > 0,
W >0,i=1,...,n are such that

Gt 25 ().

Assume that the failure rate of F, r(x) is decreasing and xr(x) is increasing. Then on some probability space (Q,F,P), there exist
random variables X}, ....X;; Y}, ...,Y}, such that

Ky X)) Z (XY, X)),

(Y1, .. Y (Y, LY,
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Xen=Yen as. fork=1,...,n

This implies in particular that

st
(Xl:n- o -Xn:n)?(yl;n' cee .Xn:n)-

Hu (1994) applied Theorem 1.3 to several important life distributions (e.g., Weibull, gamma, half-normal distributions).

Next, in this section we introduce generalized gamma and power-generalized Weibull distributions to show that
Hu'’s result can be applied to these general families of distributions which covers gamma and Weibull distributions as
special cases.

1.1. Generalized gamma distribution

A random variable X is said to have a generalized gamma distribution, denoted by X ~ GG(p,q), if it admits the following
density function:

8pg(X) =
D.q I"(%)

where p,q (> 0) are the shapes parameters. It was introduced by Stacy (1962) and includes the wildly used exponential
(p=1, g=1), Weibull (p=q), and gamma (p=1) distributions as special cases. It is a flexible family of distributions, having an
increasing failure rate when g > 1,p > 1, a bathtub failure rate when q < 1,p > 1, an upside down bathtub (or unimodal)
failure rate when g >1,p<1.

It is easy to show that for p <1,q <1, the hazard rate of generalized gamma distribution is decreasing. It is shown in
Lemma A.3 of the Appendix that xr(x) is an increasing function of x for all p,q > 0. Thus the conditions of Theorem 1.3 are
satisfied when the baseline distribution is generalized gamma distribution with p <1,q <1 and thus extending the result
of Theorem 1.1 in Sun and Zhang (2005) from standard gamma distribution to generalized gamma distribution.

x4 e x>0,

1.2. Power-generalized Weibull distribution

A random variable X is said to have power-generalized Weibull distribution, denoted by X ~ PGW(v,y), if its density
function is

ftvy) = gtﬁa Ft)V/1 1=+ e 0 vy >0, 1.2)

and its survival function is
F(t,v,y) =e =0+ 5, (1.3)

It has a decreasing failure rate when v <y,v <1, an increasing failure rate when v > y,v > 1, a bathtub failure rate when
0<7y<v<1and an upside down bathtub (or unimodal) failure rate when y > v > 1. It includes Weibull and exponential
distributions as special cases. For more details on this family and its applications in probability and statistics, the reader is
referred to Bagdonavicius and Nikulin (2002). Let r(x) be the hazard rate function of power-generalized Weibull
distribution. It is known that for v <y,0 <v <1, r(x) is a decreasing function (cf. Bagdonavicius and Nikulin, 2002).

For all values of v and y, the function

Xr(x) = %x"(l +x")1/7-1

is increasing in x. That is, the conditions of Theorem 1.3 are satisfied by the power-generalized Weibull distribution with
v <7,0 <v <1, thus extending the result of Theorem 2.2 in Khaledi and Kochar (2006) from standard Weibull distribution
to power-generalized Weibull distribution.

In Section 2, we prove that Theorem 1.3 can be strengthened from stochastic ordering to the hazard rate ordering for
series systems. In Section 3, we consider the notion of p-larger order (Definition 3.1), which is weaker than majorization, to
prove stochastic ordering between two parallel systems consisting of components whose lifetimes distributions belong to
the scale model. We also show in the same section that Theorem 1.3 can be extended from stochastic order to reverse
hazard rate order when we compare to parallel systems. We observe that the results obtained in these two sections can be
applied to generalized gamma and power generalized Weibull distributions.

2. Series systems

Next theorem shows that under some additional conditions the results of Theorem 1.3 can be extended from the usual
stochastic order to the hazard rate order when we compare two series systems.
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Theorem 2.1. Let X; ,...,X; be independent nonnegative random variables with X; ~ F(4;x), i=1,...,n, where ;> 0, i=1,...,n
and F is an absolutely continuous distribution. Let r be the hazard rate functions of F. If x2r'(x) is decreasing and
(M, An) = (U, - - - M), then

(i) Xt = XY, and
(i) if r(x) is decreasing then X7, > gispX4.,-

Proof.

(i) We have to show that the hazard rate of X1, Ix: (x) is Schur-concave in (41, . ..,4y). The partial derivative of i (x) with
respect to 4; is " "

arxfn(x)
04
Now, using Theorem 3.A.4 in Marshall and Olkin (1979), to prove the required result we have to show that
(Ai—=2)XAT (X A) +T(XA) =X A1 (x2)—T1(XA)) < 0.

=X (XA +1(X4), i=1,...,n

That is, ur'(u)+r(u) is decreasing in u which in turn is equivalent to the assumption that u?r/(u) is decreasing in u. This
proves (i).

(ii) Using the assumption that r(x) is decreasing in x and part (i), the required result follows from Theorem 2.1 in Bagai and
Kochar (1986) and Theorem 1 in Bartoszewicz (1985). O

Remark 2.1. The inequalities in (i) and (ii) of Theorem 2.1 are reversed if x2r(x) is increasing.
Let the baseline distribution be PGW(v,y). The function x?r'(x) for this distribution can be simplified as
X2rx) = %x"(l +x")1/7=2 {(v—l)(l +X")+x"v <% —1>}
-2 <x"(1 +x")‘/“f'”(v—1)+v<%-1)x"u X171y G —l)x"(l +x”)”"*2>
=7 Kf_l>x"(1 L1y (%-1);&(1 +x")1/"f*2} 2.1

Y L\Y
To prove x%r'(x) is decreasing (increasing), it is enough to show that the function

g(x) = %{ G—l)x(l +x)t/1 —v(%—l)xﬂ +x)]/"*’*2}

is decreasing (increasing). The derivative of g(x) is

2
gX=(1 +x)‘/7’3{x2 G—l) % +x<<¥—]) G +1)—v<%—]> > +v-1 } 2.2)

Let
2
—x2 3_1>1 <X—1> <1 1>— <l—1> 1 2.3
o0 x(v V+x< Y )G vl @3
then
) . 00, V>7Y,
Jﬂ(p(x):v—l and xll_rgo(/)(x): —o0, V<. 2.4

For v <7 and v < 1, the function ¢(x) is negative, from which it follows that x?r'(x) is decreasing. That is, the result of
Theorem 2.1(i) can be applied to PGW(v,y) with restriction 0 <v <7y and v < 1. Now, let v>7y and v > 1. At

(= (g‘l)(%ﬂ)_v(%_])z)
o)

¢'(x) is zero and ¢(x) attains its minimum. On the other hand under the assumptions that v>7y and v> 1, ¢(t)> 0.
Combining these observations we have that x2r'(x) is increasing, from which the result of Remark 2.1 can be applied to
PGW(v,y) with restriction v>7y and v > 1.

In Lemma A.4 of the Appendix, we show that the condition of Theorem 2.1(i) holds when the baseline distribution in the
scale model is the GG(p,q) with parameters p,q < 1. We know that for p,q < 1, the hazard rate function r(x) is decreasing.

Please cite this article as: Khaledi, B.-E., et al., Stochastic comparisons of order statistics in the scale model. J. Statist.
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That is, Theorem 2.1(ii) can be applied to this case as well. We also show that the result of Remark 2.1 can be applied to
GG(p,q) with parameters p,q > 1.

With the help of the following counterexample we show that the above observation may not be true for other order
statistics.

Example 2.1. Let (X;,X2,X3) be a set of independent random variables corresponding to a scale model with baseline
GG(0.2,0.5) and scale parameters (11,/2,43) =(0.1,2,5) and (X},X>,X3) be another set of independent random variables
corresponding to a scale model with baseline GG(0.2,0.5) and scale parameters (uy,4,,U3) = (0.1,3,4). It is easily seen that

) m
(A1,22,23) 3= (lq, fos [13).

However,
P (14)~ 035 > 1y (1.4) ~0.30.

3. Parallel systems

Bon and Paltanea (1999) have considered a pre-order on R*" called p-larger order.
Definition 3.1. A vector x in R*" is said to be p-larger than another vector y also in R*" (written x;y) if for j=1,...,n,
Jj Jj
IIxo< [Ty
i=1 i=1
It is known that when x,y € R*", then
xZy=—x7y. 3.1)

The converse is, however, not true (cf. Khaledi and Kochar, 2002).
Khaledi and Kochar (2006) proved the following result for the proportional hazard rate (PHR) model.

Theorem 3.1. Let X,...,X,, be independent random variables with X; having survival function F;'i(x), i=1,...,n. Let Y,...,Y, be
another set of independent random variables with Y; having survival function F*(x), i=1,...,n. Then

p
A= p=Xnn = stYnn.
In the next theorem we prove that under a mild condition a similar result holds for the scale model. The following lemma
is used to prove the result.
Lemma 3.1 (Khaledi and Kochar, 2002). The function y : R*" - IR satisfies
p
XFYy=Y(X) = Y(y) (3.2)
if and only if,
(i) y(e%,...,en) is Schur-convex in (ay,...,a,),
(ii) y(em,...,e%) is decreasing in a;, for i=1,...,n,
where a;= log x;, for i=1,...,n.

Theorem 3.2. Let X,...,X, be a set of independent nonnegative random variables with X; ~ F(2;x), i=1,...,n, where F is an
absolutely continuous distribution function with density function f. Let Y4,...,Y, be another set of independent nonnegative
random variables with Y; ~ F(u;x), i=1,...,n. If xF(x) is decreasing in x, then

Gt oo Im) (g o H) = Xom = st Y. 3.3)

Proof. The survival function of X,,., can be written as

n
Fx,, () =1-]] Fe%v), (3.4)
i=1
where g; =log/;, i=1,...,n. Using Lemma 3.1, it is enough to show that the function Fx,_,(t) given in (3.4) is Schur-convex
and decreasing in a;’s. To prove its Schur-convexity, it follows from Theorem 3.A.4 in Marshall and Olkin (1979) that we
have to show that for i#j,

oF,, oFx,,
(a;—aj) (aa,» — 6aj> >0,

Please cite this article as: Khaledi, B.-E., et al., Stochastic comparisons of order statistics in the scale model. ]. Statist.
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that is, for i#j,

(ai—ay) [ ] Fet)

i=1

f(te%) fte™)

a _ tpli

{te i Fite%) te Fieey =% 3.5)
The assumption xi*(x) is decreasing implies that the function e%‘#(e%t) is decreasing in a;, i=1,...,n, from which it follows
that (3.5) holds. The partial derivative of Fx,_, (t) with respect to a; is negative, which in turn implies that the survival
function of X/, is decreasing in q; for i=1,...,n. This completes the proof of the required result. O

Remark 3.1. Khaledi and Kochar (2000) proved (3.3) when the baseline distribution in the scale model is exponential.
The above theorem immediately leads to the following corollary.

Corollary 3.1. Let Xy,....X, be a set of independent nonnegative random variables with X; ~ F(4;x), i=1,...,n, where F is an
absolutely continuous distribution function with density function f. Let Yi,...,Y, be ii.d. random variables with common c.d f.
F(4x), where A is the geometric mean of the 2;’ s. If xF(x) is decreasing in x, then Xn.n > st Ynn.

The above corollary gives a lower bound on the survival function of a parallel system with nonidentical components in
terms of the one with i.i.d. components when the common scale parameter is the geometric mean of the scale parameters.
The new bound is better than the one that follows from Hu (1995) which is in terms of the arithmetic mean of the scale
parameters since Fy,,(x) is a nonincreasing function of 4 and the fact that the geometric mean of the ;" s is smaller than
their arithmetic mean.

Under the conditions of Theorems 1.3 and 3.2 the improvements on the bounds are relatively more if the 4;’s are more
dispersed in the sense of majorization. This fact follows from the fact that the geometric mean is Schur concave whereas
the arithmetic mean is Schur constant and the survival function of a parallel system of i.i.d. components with baseline
distribution F(x) and common parameter / is decreasing in /.

We show in Lemmas 4.5 and 4.6 in the Appendix that the conditions of Theorem 3.2 are satisfied when the baseline
distributions in the scale model are generalized gamma distribution and power-generalized Weibull distribution with
arbitrary parameters.

In Fig. 1, we plot the survival function of a parallel system consisting of three components with generalized gamma
distributions with scale parameters 4; =(0.01,1.8,5.99) and shape parameters q=0.2 and p=0.5 along with the lower
bounds as given by Corollary 3.1 based on the geometric mean and the arithmetic mean of the parameters. The vector of

parameters in Fig. 2 is 4, =(0.5,3.5,3.8). Note that 4; Qb. As discussed above, the improvements on the bounds are
relatively more if the ;" s are more dispersed in the sense of majorization.

Next theorem extends Theorem 1.3 from the usual stochastic order to the reverse hazard rate order when we compare
two parallel systems, a result which is similar to Theorem 2.1.

Theorem 3.3. Let X; ,...,X;, be independent nonnegative random variables with X; ~ F(/;x), i=1,...,n, where ;> 0, i=1,...,n
and F is an absolutely continuous distribution. Let f and 7 be the density and the reverse hazard rate functions of F, respectively. If
X2F'(x) is increasing, then

Gt od) = (s o) = Ko = X 3.6)

1O | 2, = (0.011.8,5.99)

7 = 3/0.10782,3/0.10782,3/0.10782)
2 =(2.6,2.6,2.6)

0.2 04 0.6 08 1.0

Fig. 1. Graphs of survival functions of X.3.

Please cite this article as: Khaledi, B.-E., et al., Stochastic comparisons of order statistics in the scale model. J. Statist.
Plann. Inference (2010), doi:10.1016/].jspi.2010.06.006



dx.doi.org/10.1016/j.jspi.2010.06.006

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

B.-E. Khaledi et al. / Journal of Statistical Planning and Inference n (1nin) ma-am 7

1 2, =(0.5,35,3.8)
o8 i = (\]3 6.65,3\]6.65,3\/6.65)
A, =(2.6,2.6,2.6)
0.6
0.4
0.2

0.2 0.4 0.6 0.8 1
Fig. 2. Graphs of survival functions of X3.3.

Proof. We have to show that FX{;:,, (%) is Schur-convex in (44, ...,4n). The partial derivative of Fx;;,, (x) with respect to 4; is
ar)(;"i)”l(x) =X (X)) +TF(xA), i=1,....n.

Now, using Theorem 3.A.4 in Marshall and Olkin (1979), to prove the required result we have to show that
(Ai—ADXAT (XA) + TF(xAi) =X 4T (xA)—F(xA)) > 0.

That is, uf'(u)+7(u) is increasing in u which in turn is equivalent to the assumption that u?#'(u) is increasing in u. This

proves the required result. O

Remark 3.2. The inequality in (3.6) is reversed if x2¥'(x) is decreasing.

It is proved in Lemma A.8 in the Appendix that the conditions of Theorem 3.3 are satisfied by generalized gamma
distribution with the parameters p<1 and g > 0. That is, the reverse hazard rate of a parallel system consisting of
independent components with GG(p,q) lifetimes is Schur convex in the vector of scales parameters, when either p <1 and
q<1 (thatis Fis DFR) or p<1 and g > 1 (that is F has an upside down bathtub failure rate).
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Appendix A

To prove the required results in this section the following observations are required. First, we need the following crucial
relations between r(x), the hazard rate of generalized gamma random variable and its derivative, r'(x). By definition,

Xq—le—xp
r(x) = TPt 1e T dt A1)
and its derivative with respect to x is
oo = x1-2e~ (q—1—pxP) [ t9-1e~" dt+(xI-1e )2
- (e tr-te=t dey? '
Combining these, we have
rx 4D
Xr(x) =q—1—pxP +xr(x) (A2)
and
r@\ L X1 (%)
(x) =ro(1 1+ ) A3

where (xr'(x)/r(x)) denote the derivative of xr'(x)/r(x) with respect to x. Using (A.1)-(A.3), after some simplification and
manipulations we obtain the following lemma that is used to prove Lemma A.2.
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Lemma A.1. Let r(x) be the hazard rate of a generalized gamma random variable with parameters p,q > 0. Then

. x-1 (0, g<p .oxt 1

@ Mlim-rs = { o, g>p M4 JNmios=2 (A4)
L T(X) . re

(b) XIEPOXW_ qg—1 and Xlg]goxW =p-1. (A.5)

Lemma A.2. Let U(x)=xP~'/r(x) and g(x) = xr'(x)/r(x), then for all x> 0 and p > q we have

(i) gx)>q-1,
(ii)) Ux)<1/p and
(iii) g(x) <p-1 forall x>0

where r(x) and xr'(x)/r(x), respectively, are defined as in (A.1) and (A.2).

Proof.

(i) Suppose miny - og(x) < q—1. In this case, it follows from Lemma A.1(b) that g(x) crosses the level g—1 at least once.
That is, there exist a point v > 0 such that vr'(v)/r(v) = g—1. Now, it follows from (A.2) that U(v)=1/p. Using these
observations in (A.3), we obtain that (v*r'(v¥)/r(v*)) =r(v*)(q—p) < 0. That is,

r'(X)

for x < v we have x
r(x)

>q-1. (A.6)

Now, first we show that if the point v exists, it is unique. It follows from Lemma A.1(b), limy_ ..xr'(x)/r(x) =p—1 and
assumption p > q that the function g(x) has to cross the level g—1 at least at another point, say v* such that
(v*r'(v¥)/r(v¥)) > 0, but this is impossible, since the derivative of g(x) at crossing point v and v* is negative. Thus,
v is unique and v is the only point at which the function g(x) crosses the level g—1 and for x >v we have
xr'(x)/r(x) < q—1. But, this contradict limy_, ..xr'(x)/r(x) = p—1. That is, such a point v does not exist. This proves the
required result of (i).

(ii) Suppose that maxy. oU(x) > 1/p. From Lemma A.1(a), U(co) = 1/p and U(0)=0. Therefore, U(x) crosses level 1/p, from
which it follows that g(x) has to cross the level g— 1. But, from (i), this is not the case. This completes the proof of (ii).

(iii) Suppose that maxy .. gxr’(x)/r(x) > p—1 Then, it follows from Lemma A.1(b) that the function g(x) must cross the level
p—1 at least once. Let i be one of the crossing points. That is ur'(1)/r(1t) = p—1. Now using this in (A.3), it follows that

re\ _ 2&71}
(xr(X)>x:,,_rw)[p Pl

Now, it follows from (ii) that (xr/(x)/r(x))’/x:ﬂ > 0. Using similar kind of arguments as used in part (i), it is easy to
show that the crossing point u is unique. Now, it follows from Lemma A.1(b) that

r'(x) r'(x)
forx<,u,xr(x) <p-1 and forx>,u,xr(x) >p-—1. (A7)
On the other hand,
U= 1 )

Combining these observations we obtain for x <y, U'(x) > 0 and for x > u, U'(x) < 0, but these observations contradict
Lemma A.1(a). That is, the crossing point y does not exist, from which the required result follows. O

Remark A.1. The inequalities in (i), (ii) and (iii) of Lemma A.2 are reversed for p <q.

Lemma A.3. Let X ~ GG(p,q), p,q > 0, then xr(x) is an increasing function.

Proof. The derivative of xr(x) is
Xxr'(x)
rx )
Now, the proof of the required result simply follows from Lemma A.2(i) and (iii) and Remark A.1. O

(xXr(x)) =r(x) (1 +

Lemma A4. Let X ~ GG(p,q), p,q < 1, with hazard rate r(x), then x>r'(x) is a deceasing function.

Proof. We prove the result for the case when g < p. The proof for the case when g > p is similar and hence is omitted.
We write
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2 (x) — r'®
X°r'(x) = (xr(x)) (x - (x))

derivative of this function with respect to x is

r'(X) r'(X) 5 XP
r(x)(l +x@) X ® +Xr(x)—p m . (A.8)
r(x)

It follows from Lemma A.2 that g < 1+xr'(x)/r(x) < p. Now, to prove the required result we show that

> X
+Xr(X)—p ™ <0. (A9)
1+x

rx)

r'X)

r(x)

Lx)= |x

Using the above relations, Lopital’s formula and some manipulations, we obtain that

limL(x) = g—1 (A.10)
x—0

and
xlim Lx)=p-1. (A11)

Suppose maxy - oL(x) > 0. Then, it follows from (A.10) and (A.11) that L(x) has to cross the level O at least twice. The
derivative of L(x) with respect to x, after some simplifications, is

/ 2+p—1 —2 2 24p—1
L) = r(x)(l +xr(")) e PR rwran—p Py P (A12)
) r(x) <1 + xﬁ) 1 +xr *) 1 +Xr ® r(x) <1 +xr (X)>
) ) ) )

At any point v that L(v) =0, we have vr'(v)/r(v)+vr(v) = p?>v? /(1 +vr'(v)/r(v)). Using this in (A.12),

Py W W) 1-p 1 rw)
L(v)_(l+v r(v)) — r(v)+—1+v@x;x {vr(v)+v r(v)] > 0.
r(v)

But, this observation contradict both relations (A.10) and (A.11). That is, the function x?r'(x) is a decreasing function. [
The following interesting remark can be proved using the similar arguments used to prove Lemma A.4.

Remark A.2. Let X ~ GG(p,q), p,q > 1, with hazard rate r(x), then x2r'(x) is an increasing function.

Lemma A.5. Let X ~ GG(p,q), p,q > 0, with reverse hazard rate ¥(x), then x¥(x) is a decreasing function.

Proof. By definition,

. xie=

XF(x) = W (A.13)

and its derivative
q—1 =X [ pyP] (X +4—1p—tP d4_ q—1p—xP 2
) [a=px")Jo 7T di M e T F(Olg—pxP —xF (X)]. (A14)
(s to-te-e do)

Let y/(x) = pxP +x7(x). That is, we have to show that y(x) > q for all x > 0. It is easy to see that

im (x) = oo (A.15)
and

lim y/(x) =q. (A.16)

x—0

Now, suppose miny . o/(x) < q. Then /(x) has to cross the level g at least once, since 1/(0) = q and /(c0) = co. That is, there
exist a point v > 0 such that /(v) = q. Then, using this in

V' (%) = p2XP~ 1+ F(X)(q—pxP —xF(x))
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we obtain that
Y'(v)y=p*w¥1>0.
Suppose that v is the first point that (v) = q. That is,
for x <v we have (x) <q. (A17)

Then for x < v, Y(x) is increasing and y(x) > ¥(0) = q. That is a contradiction with y(x) < q. Then for x < v, y(x) > ¢, but this is
impossible, since the derivative of y/(x) at crossing point v is positive. That is, such a point v does not exist. This proves that
Y(x) > q and then according to (A.14), the function x#(x) is decreasing and the required result is proved. O

The following lemma for power-generalized Weibull distribution can be proved using similar kind of arguments used
above.

Lemma A.6. Let X ~ PGW(v,y), v,y > 0, with reverse hazard rate 7(x), then x¥(x) is a decreasing function.

Lemma A.7. Let 7(x) be the hazard rate of a generalized gamma random variable with shape parameters p,q > 0. Then

(@) limoxf(x) =q and Xlirgoxf(x) =0, (A.18)
N e . Fx)
(b) XIE]OX 0 -1 and Xlewx 0 —o0. (A.19)

Proof. The reverse hazard rate of GG(p,q) is

N xi-1e=¥
rTX)= ————, A.20
& Jo ta—te= dt (A.20)
its derivative with respect to x is
P = X127 (q—1—pxP) [y t9-1e~? dt—(x-Te~")?
(J¥ta-1e-v dr)? '
Combining these observation, we have
Fey
X o) = q—1—pxP —xr(x) (A21)
and
PO oo 12 (T ®
(x F(X)) =T < 1-p o W) (A22)

where (xr'(x)/r(x)) denote the derivative of xi*'(x)/#(x) with respect to x. Now the required results follow from similar kind
of arguments used to prove Lemma A.1. O

Lemma A.8. Let X ~ GG(p,q), p < 1, with reverse hazard rate 7 (x), then x*7'(x) is an increasing function.

Proof. Derivative of negative function

X2 (x) = (XF(X) (x FOO)

r(x)

with respect to x is

= (% (%) a2
r(x) (1 +Xx F(x)) X 700 XT(X)—p o (A.23)
1+x%
F(x)
In Lemma A.5 we proved that x7(x) is decreasing from which it follows that x7'(x)/7(x) < —1. Now we prove that
" v
L = |20 _xiey—p2— 2| <0 (A24)
r(x) (X
T+
r(x)
which completes the proof of required result. Using (A.21) in (A.24), for p > q, we obtain that
limOL(x) =p-1<0. (A.25)
X—>
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On the other hand, part(a) of Lemma A.7 implies that
lim L(x) = —oo. (A.26)
X—> 00

Suppose maxy - oL(x) > 0. Then, it follows from (A.25) and (A.26) that L(x) has to cross the level 0 at least twice. The
derivative of L(x) with respect to x is

rw=—p X (1 +xf,(")> —2F(x) <1 +xfl(")> Y (1 +x@) X (1 +xf,(x)>

1 +Xﬁ’(%) F(x) F(x) 1 +xf~/(x) F(x) 1 +XfN’(X) F(x)
F(x) F(x) (%)
2 ¥R F(x)
p 1+XF’(X) (1 +xf(x))' (A.27)
F(x)

At any point v, where L(v) =0, we have vi¥'(v)/F(v)+ vF(v) = p*V? /(14 vi'(v)/F(v)). Using this observation in (A.27),

P\ F'(v) (v)
F(V)) F(v) F(v)

But, this observation contradict both relations (A.25) and (A.26). That is, the function x?7'(x) is an increasing function. [

L'(v)y=-2 <1+v +(1-p) (v —F(v)) <0.
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