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Independent random variables Xl1
, . . . ,Xln

are said to belong to the scale family of

distributions if Xli
� FðlixÞ, for i=1,y,n, where F is an absolutely continuous distribution

function with hazard rate r and reverse hazard rate ~r . We show that the hazard rate

(reverse hazard rate) of a series (parallel) system consisting of components with

lifetimes Xl1
, . . . ,Xln

is Schur concave (convex) with respect to the vector k, if x2r0ðxÞ

ðx2 ~r 0ðxÞÞ is decreasing (increasing). We also show that if xr(x) is increasing in x, then the

survival function of the parallel system is increasing in the vector k with respect to

p-larger order, an order weaker than majorization. We prove that all these new results

hold for the scaled generalized gamma family as well as the power-generalized Weibull

family of distributions. We also show that in the case of generalized gamma and power

generalized Weibull distribution, under some conditions on the shape parameters, the

vector of order statistics corresponding to Xli
’s is stochastically increasing in the vector

k with respect to majorization thus generalizing the main results in Sun and Zhang

(2005) and Khaledi and Kochar (2006).

& 2010 Published by Elsevier B.V.
1. Introduction

Independent random variables Xl1
, . . . ,Xln

are said to belong to the scale family of distributions if Xli
� FðlixÞ, for

i=1,y,n, where F is an absolutely continuous distribution function with density function f. It means that the random
variables l1Xl1

, . . . ,lnXln
are independent and identically distributed with common c.d.f. F. F is called the baseline

distribution and the li’s are the scale parameters. It includes many important distributions like normal, exponential,
Weibull, gamma as special cases. The scale model is of theoretical as well as practical importance in various fields of
probability and statistics.

There is an extensive literature on stochastic orderings among order statistics when the observations follow the
exponential distribution with different scale parameters. Important contributions in this area have been made by Pledger
and Proschan (1971), Proschan and Sethuraman (1976), Boland et al. (1994 a, b), Dykstra et al. (1997), Khaledi and Kochar
(2000), Bon and Paltanea (2006), among others. Also see a review paper by Kochar and Xu (2007) on this topic. Sun and
Zhang (2005) considered the case of gamma distribution whereas Khaledi and Kochar (2006) considered the case of
Weibull distribution.

Pledger and Proschan (1971) and Hu (1995) considered the general scale model and obtained stochastic ordering results
between two vectors of order statistics when one set of scale parameters majorizes the other. In this paper we revisit this
Elsevier B.V.

ledi).
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problem and obtain some new results and apply them when the baseline distributions are generalized gamma and power-
generalized Weibull distributions. Our results extend some of the existing results.

We first introduce some notations and give definitions. Throughout this paper increasing means nondecreasing and
decreasing means nonincreasing; and we shall be assuming that all distributions under study are absolutely continuous.

Let X and Y be univariate random variables with distribution functions F and G, survival functions F and G, hazard rate
functions rF and rG, reverse hazard rate functions ~rF and ~rG, respectively.

Definition 1.1.
(a)
Pl
Pl
X is said to be stochastically smaller than Y (denoted by Xr stY) if F ðxÞrGðxÞ for all x. This is equivalent to saying that
EgðXÞrEgðYÞ for any increasing function g for which expectations exist.
(b)
 X is said to be smaller than Y according to hazard rate ordering (denoted by XrhrY) if rF ðxÞZrGðxÞ for all x.

(c)
 X is said to be smaller than Y according to reverse hazard rate ordering (denoted by Xr rhY) if ~rF ðxÞr ~rGðxÞ for all x.

(d)
 X is said to be smaller than Y according to dispersive ordering (denoted by XrdispY) if G�1ðvÞ�G�1ðuÞZF�1ðvÞ�F�1ðuÞ,

for 0ouovo1.
Definition 1.2. A random vector X=(X1,y,Xn) is said to be smaller than another random vector Y=(Y1,y,Yn) according to

multivariate stochastic ordering (denoted by X$

st
Y) if hðXÞr sthðYÞ for all increasing functions h.

It is easy to see that multivariate stochastic ordering implies component-wise stochastic ordering. For more details see
Chapters 1 and 6 of Shaked and Shanthikumar (2007).

Next we introduce the notion of majorization which is one of the basic tools in establishing various inequalities in
statistics and probability.

Definition 1.3. Let fxð1Þr � � �rxðnÞg denote the increasing arrangement of the components of a vector x=(x1,y,xn). A

vector x is said to majorize another vector y (written xk
m

y) if
Pj

i ¼ 1 xðiÞr
Pj

i ¼ 1 yðiÞ for j=1,y,n�1 and
Pn

i ¼ 1 xðiÞ ¼
Pn

i ¼ 1 yðiÞ.

Functions that preserve the majorization ordering are called Schur-convex functions. Marshall and Olkin (1979) provides
extensive and comprehensive details on the theory of majorization and its applications in statistics.

In the following, the ith order statistic corresponding to a sample of size n from a random variable X is denoted by Xi:n,
i=1,y,n. Pledger and Proschan (1971) proved the following general result for the scale model.

Theorem 1.1. Let X1,y,Xn; Y1,y,Yn be independent nonnegative random variables with Xi � FðlixÞ, Yi � FðmixÞ, li40, mi40,
i=1,y, n where F is an absolutely continuous distribution. If r(x), the hazard rate of F, is decreasing, then

ðl1, . . . ,lnÞk
m
ðm1, . . . ,mnÞ¼)Xk:nZ stYk:n

for k=1,y,n.

Let Gða,lÞ and Wða,lÞ denote gamma and Weibull random variables with shape parameter a and scale parameter l. For
these scale models, Sun and Zhang (2005) and Khaledi and Kochar (2006), respectively, extended the above result from
component-wise stochastic ordering to multivariate stochastic ordering. They proved the following theorem.

Theorem 1.2. Let (X1, y, Xn) and (Y1, y,Yn) be two independent random vectors with
(a)
 Xi �Wða,liÞ and Yi �Wða,miÞ, i= 1,y, n or
(b)
 Xi � Gða,liÞ and Yi � Gða,miÞ, i= 1,y,n.
Then for 0oar1,

kk
m
l) ðX1:n, . . . ,Xn:nÞk

st
ðY1:n, . . . ,Yn:nÞ: ð1:1Þ

Hu (1995) also considered the general scale problem and proved the following result.

Theorem 1.3. Let X1,y,Xn; Y1,y,Yn be independent nonnegative random variables with Xi � FðlixÞ, Yi � FðmixÞ, where li40,
mi40, i=1,y,n are such that

ðl1, . . . ,lnÞk
m
ðm1, . . . ,mnÞ:

Assume that the failure rate of F, r(x) is decreasing and xr(x) is increasing. Then on some probability space ðO,F ,PÞ, there exist

random variables X01, . . . ,X0n; Y 01, . . . ,Y 0n such that

ðX1, . . . ,XnÞ ¼
st
ðX01, . . . ,X0nÞ,

ðY1, . . . ,YnÞ ¼
st
ðY 01, . . . ,Y 0nÞ,
ease cite this article as: Khaledi, B.-E., et al., Stochastic comparisons of order statistics in the scale model. J. Statist.
ann. Inference (2010), doi:10.1016/j.jspi.2010.06.006
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Xk:nZYk:n a:s: for k¼ 1, . . . ,n:

This implies in particular that

ðX1:n, . . . ,Xn:nÞk
st
ðY1:n, . . . ,Xn:nÞ:

Hu (1994) applied Theorem 1.3 to several important life distributions (e.g., Weibull, gamma, half-normal distributions).
Next, in this section we introduce generalized gamma and power-generalized Weibull distributions to show that

Hu’s result can be applied to these general families of distributions which covers gamma and Weibull distributions as
special cases.

1.1. Generalized gamma distribution

A random variable X is said to have a generalized gamma distribution, denoted by X � GGðp,qÞ, if it admits the following
density function:

gp,qðxÞ ¼
p

G
q

p

� � xq�1e�xp

x40,

where p,q ð40Þ are the shapes parameters. It was introduced by Stacy (1962) and includes the wildly used exponential
(p=1, q=1), Weibull (p=q), and gamma (p=1) distributions as special cases. It is a flexible family of distributions, having an
increasing failure rate when qZ1,pZ1, a bathtub failure rate when qo1,p41, an upside down bathtub (or unimodal)
failure rate when q41,po1.

It is easy to show that for pr1,qr1, the hazard rate of generalized gamma distribution is decreasing. It is shown in
Lemma A.3 of the Appendix that xr(x) is an increasing function of x for all p,q40. Thus the conditions of Theorem 1.3 are
satisfied when the baseline distribution is generalized gamma distribution with pr1,qr1 and thus extending the result
of Theorem 1.1 in Sun and Zhang (2005) from standard gamma distribution to generalized gamma distribution.

1.2. Power-generalized Weibull distribution

A random variable X is said to have power-generalized Weibull distribution, denoted by X � PGWðn,gÞ, if its density
function is

f ðt,n,gÞ ¼ n
g

tn�1ð1þtnÞ1=g�1e1�ð1þ tnÞ1=g , t40, n,g40, ð1:2Þ

and its survival function is

F ðt,n,gÞ ¼ e1�ð1þ tnÞ1=g , t40: ð1:3Þ

It has a decreasing failure rate when nrg,nr1, an increasing failure rate when nZg,nZ1, a bathtub failure rate when
0ogono1 and an upside down bathtub (or unimodal) failure rate when g4n41. It includes Weibull and exponential
distributions as special cases. For more details on this family and its applications in probability and statistics, the reader is
referred to Bagdonavicius and Nikulin (2002). Let r(x) be the hazard rate function of power-generalized Weibull
distribution. It is known that for nrg,0onr1, r(x) is a decreasing function (cf. Bagdonavicius and Nikulin, 2002).

For all values of n and g, the function

xrðxÞ ¼
n
g xnð1þxnÞ1=g�1

is increasing in x. That is, the conditions of Theorem 1.3 are satisfied by the power-generalized Weibull distribution with
nrg,0onr1, thus extending the result of Theorem 2.2 in Khaledi and Kochar (2006) from standard Weibull distribution
to power-generalized Weibull distribution.

In Section 2, we prove that Theorem 1.3 can be strengthened from stochastic ordering to the hazard rate ordering for
series systems. In Section 3, we consider the notion of p-larger order (Definition 3.1), which is weaker than majorization, to
prove stochastic ordering between two parallel systems consisting of components whose lifetimes distributions belong to
the scale model. We also show in the same section that Theorem 1.3 can be extended from stochastic order to reverse
hazard rate order when we compare to parallel systems. We observe that the results obtained in these two sections can be
applied to generalized gamma and power generalized Weibull distributions.

2. Series systems

Next theorem shows that under some additional conditions the results of Theorem 1.3 can be extended from the usual
stochastic order to the hazard rate order when we compare two series systems.
Please cite this article as: Khaledi, B.-E., et al., Stochastic comparisons of order statistics in the scale model. J. Statist.
Plann. Inference (2010), doi:10.1016/j.jspi.2010.06.006
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Theorem 2.1. Let Xl1
, . . . ,Xln

be independent nonnegative random variables with Xli
� FðlixÞ, i=1,y,n, where li40, i=1,y,n

and F is an absolutely continuous distribution. Let r be the hazard rate functions of F. If x2r0ðxÞ is decreasing and

ðl1, . . . ,lnÞk
m
ðm1, . . . ,mnÞ, then
(i)
Pl
Pl
Xl
1:nZhrXm

1:n, and
(ii)
 if r(x) is decreasing then Xl
1:nZdispXm

1:n.
Proof.
(i)
 We have to show that the hazard rate of X(1), rXl
1:n
ðxÞ is Schur-concave in ðl1, . . . ,lnÞ. The partial derivative of rXl

1:n
ðxÞwith

respect to li is

@rXl
1:n
ðxÞ

@li
¼ xlir

0ðxliÞþrðxliÞ, i¼ 1, . . . ,n:

Now, using Theorem 3.A.4 in Marshall and Olkin (1979), to prove the required result we have to show that

ðli�ljÞðxlir
0ðxliÞþrðxliÞ�xljr

0ðxljÞ�rðxljÞÞr0:

That is, ur0ðuÞþrðuÞ is decreasing in u which in turn is equivalent to the assumption that u2r0ðuÞ is decreasing in u. This
proves (i).
(ii)
 Using the assumption that r(x) is decreasing in x and part (i), the required result follows from Theorem 2.1 in Bagai and
Kochar (1986) and Theorem 1 in Bartoszewicz (1985). &
Remark 2.1. The inequalities in (i) and (ii) of Theorem 2.1 are reversed if x2r0ðxÞ is increasing.

Let the baseline distribution be PGWðn,gÞ. The function x2r0ðxÞ for this distribution can be simplified as

x2r0ðxÞ ¼
n
g xnð1þxnÞ1=g�2

ðn�1Þð1þxnÞþxnn 1

g�1

� �� �

¼
n
g

xnð1þxnÞ1=g�1
ðn�1Þþn 1

g
�1

� �
xnð1þxnÞ1=g�1

�n 1

g
�1

� �
xnð1þxnÞ1=g�2

� �

¼
n
g

n
g
�1

� �
xnð1þxnÞ1=g�1

�n 1

g
�1

� �
xnð1þxnÞ1=g�2

� �
: ð2:1Þ

To prove x2r0ðxÞ is decreasing (increasing), it is enough to show that the function

gðxÞ ¼
n
g

n
g
�1

� �
xð1þxÞ1=g�1

�n 1

g
�1

� �
xð1þxÞ1=g�2

� �

is decreasing (increasing). The derivative of g(x) is

g0ðxÞ ¼ ð1þxÞ1=g�3 x2 n
g�1

� �
1

g þx
n
g�1

� �
1

g þ1

� �
�n 1

g�1

� �2
 !

þn�1

( )
: ð2:2Þ

Let

fðxÞ ¼ x2 n
g
�1

� �
1

g
þx

n
g
�1

� �
1

g
þ1

� �
�n 1

g
�1

� �2
 !

þn�1, ð2:3Þ

then

lim
x�!0

fðxÞ ¼ n�1 and lim
x�!1

fðxÞ ¼
1, n4g,

�1, nog:

(
ð2:4Þ

For nrg and no1, the function fðxÞ is negative, from which it follows that x2r0ðxÞ is decreasing. That is, the result of
Theorem 2.1(i) can be applied to PGWðn,gÞ with restriction 0onrg and no1. Now, let n4g and n41. At

t¼�

n
g
�1

� �
1

g
þ1

� �
�n 1

g
�1

� �2
 !

2
n
g
�1

� � ,

f0ðxÞ is zero and fðxÞ attains its minimum. On the other hand under the assumptions that n4g and n41, fðtÞ40.
Combining these observations we have that x2r0ðxÞ is increasing, from which the result of Remark 2.1 can be applied to
PGWðn,gÞ with restriction n4g and n41.

In Lemma A.4 of the Appendix, we show that the condition of Theorem 2.1(i) holds when the baseline distribution in the
scale model is the GG(p,q) with parameters p,qo1. We know that for p,qr1, the hazard rate function r(x) is decreasing.
ease cite this article as: Khaledi, B.-E., et al., Stochastic comparisons of order statistics in the scale model. J. Statist.
ann. Inference (2010), doi:10.1016/j.jspi.2010.06.006
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That is, Theorem 2.1(ii) can be applied to this case as well. We also show that the result of Remark 2.1 can be applied to
GG(p,q) with parameters p,q41.

With the help of the following counterexample we show that the above observation may not be true for other order
statistics.

Example 2.1. Let (X1,X2,X3) be a set of independent random variables corresponding to a scale model with baseline
GG(0.2,0.5) and scale parameters ðl1,l2,l3Þ ¼ ð0:1,2,5Þ and (X*

1,X*
2,X*

3) be another set of independent random variables
corresponding to a scale model with baseline GG(0.2,0.5) and scale parameters ðm1,m2,m3Þ ¼ ð0:1,3,4Þ. It is easily seen that

ðl1,l2,l3Þk
m
ðm1,m2,m3Þ:

However,

rX3:3
ð1:4Þ � 0:354rX�

3:3
ð1:4Þ � 0:30:

3. Parallel systems

Bon and Paltanea (1999) have considered a pre-order on Rþ
n

called p-larger order.

Definition 3.1. A vector x in Rþ
n

is said to be p-larger than another vector y also in Rþ
n

(written xk
p

y) if for j=1,y,n,

Yj

i ¼ 1

xðiÞr
Yj

i ¼ 1

yðiÞ:

It is known that when x,y 2 Rþ
n

, then

xk
m

y¼)xk
p

y: ð3:1Þ

The converse is, however, not true (cf. Khaledi and Kochar, 2002).
Khaledi and Kochar (2006) proved the following result for the proportional hazard rate (PHR) model.

Theorem 3.1. Let X1,y,Xn be independent random variables with Xi having survival function F
li
ðxÞ, i=1,y,n. Let Y1,y,Yn be

another set of independent random variables with Yi having survival function F
mi
ðxÞ, i=1,y,n. Then

kk
p
l¼)Xn:nZ stYn:n:

In the next theorem we prove that under a mild condition a similar result holds for the scale model. The following lemma
is used to prove the result.

Lemma 3.1 (Khaledi and Kochar, 2002). The function c : Rþ
n

-IR satisfies

xk
p

y¼)cðxÞZcðyÞ ð3:2Þ

if and only if,
(i)
Pl
Pl
cðea1 , . . . ,ean Þ is Schur-convex in (a1,y,an),

(ii)
 cðea1 , . . . ,ean Þ is decreasing in ai, for i=1,y,n,
where ai= log xi, for i=1,y,n.

Theorem 3.2. Let X1,y,Xn be a set of independent nonnegative random variables with Xi � FðlixÞ, i=1,y,n, where F is an

absolutely continuous distribution function with density function f. Let Y1,y,Yn be another set of independent nonnegative

random variables with Yi � FðmixÞ, i=1,y,n. If x~rðxÞ is decreasing in x, then

ðl1, . . . ,lnÞk
p
ðm1, . . . ,mnÞ¼)Xn:nZ stYn:n: ð3:3Þ

Proof. The survival function of Xn:n can be written as

F Xn:n
ðtÞ ¼ 1�

Yn

i ¼ 1

Fðeai tÞ, ð3:4Þ

where ai ¼ logli, i¼ 1, . . . ,n. Using Lemma 3.1, it is enough to show that the function F Xn:n
ðtÞ given in (3.4) is Schur-convex

and decreasing in ai
0s. To prove its Schur-convexity, it follows from Theorem 3.A.4 in Marshall and Olkin (1979) that we

have to show that for iaj,

ðai�ajÞ
@F Xn:n

@ai
�
@F Xn:n

@aj

 !
Z0,
ease cite this article as: Khaledi, B.-E., et al., Stochastic comparisons of order statistics in the scale model. J. Statist.
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that is, for iaj,

ðai�ajÞ
Yn

i ¼ 1

Fðeai tÞ teaj
f ðteaj Þ

Fðteaj Þ
�teai

f ðteai Þ

Fðteai Þ

� �
Z0: ð3:5Þ

The assumption x~rðxÞ is decreasing implies that the function eait ~rðeai tÞ is decreasing in ai, i=1,y,n, from which it follows
that (3.5) holds. The partial derivative of F Xn:n

ðtÞ with respect to ai is negative, which in turn implies that the survival
function of Xl

n:n is decreasing in ai for i=1,y,n. This completes the proof of the required result. &

Remark 3.1. Khaledi and Kochar (2000) proved (3.3) when the baseline distribution in the scale model is exponential.

The above theorem immediately leads to the following corollary.

Corollary 3.1. Let X1,y,Xn be a set of independent nonnegative random variables with Xi � FðlixÞ, i=1,y,n, where F is an

absolutely continuous distribution function with density function f. Let Y1,y,Yn be i.i.d. random variables with common c.d.f.

Fð ~lxÞ, where ~l is the geometric mean of the li’ s. If x~rðxÞ is decreasing in x, then Xn:nZ stYn:n.

The above corollary gives a lower bound on the survival function of a parallel system with nonidentical components in
terms of the one with i.i.d. components when the common scale parameter is the geometric mean of the scale parameters.
The new bound is better than the one that follows from Hu (1995) which is in terms of the arithmetic mean of the scale
parameters since F Xn:n

ðxÞ is a nonincreasing function of ~l and the fact that the geometric mean of the li’ s is smaller than
their arithmetic mean.

Under the conditions of Theorems 1.3 and 3.2 the improvements on the bounds are relatively more if the li’s are more
dispersed in the sense of majorization. This fact follows from the fact that the geometric mean is Schur concave whereas
the arithmetic mean is Schur constant and the survival function of a parallel system of i.i.d. components with baseline
distribution F(x) and common parameter ~l is decreasing in ~l.

We show in Lemmas 4.5 and 4.6 in the Appendix that the conditions of Theorem 3.2 are satisfied when the baseline
distributions in the scale model are generalized gamma distribution and power-generalized Weibull distribution with
arbitrary parameters.

In Fig. 1, we plot the survival function of a parallel system consisting of three components with generalized gamma
distributions with scale parameters k1 ¼ ð0:01,1:8,5:99Þ and shape parameters q=0.2 and p=0.5 along with the lower
bounds as given by Corollary 3.1 based on the geometric mean and the arithmetic mean of the parameters. The vector of

parameters in Fig. 2 is k2 ¼ ð0:5,3:5,3:8Þ. Note that k1k
m

k2. As discussed above, the improvements on the bounds are
relatively more if the li’ s are more dispersed in the sense of majorization.

Next theorem extends Theorem 1.3 from the usual stochastic order to the reverse hazard rate order when we compare
two parallel systems, a result which is similar to Theorem 2.1.

Theorem 3.3. Let Xl1
, . . . ,Xln

be independent nonnegative random variables with Xli
� FðlixÞ, i=1,y,n, where li40, i=1,y,n

and F is an absolutely continuous distribution. Let f and ~r be the density and the reverse hazard rate functions of F, respectively. If

x2 ~r 0ðxÞ is increasing, then

ðl1, . . . ,lnÞk
m
ðm1, . . . ,mnÞ ) Xl

n:nZ rhXm
n:n: ð3:6Þ
0.2 0.4 0.6 0.8 1.0
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0.4
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1
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1
~

Fig. 1. Graphs of survival functions of X3:3.
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Proof. We have to show that ~rXl
n:n
ðxÞ is Schur-convex in ðl1, . . . ,lnÞ. The partial derivative of ~rXl

n:n
ðxÞ with respect to li is

@~rXl
n:n
ðxÞ

@li
¼ xli ~r

0
ðxliÞþ ~rðxliÞ, i¼ 1, . . . ,n:

Now, using Theorem 3.A.4 in Marshall and Olkin (1979), to prove the required result we have to show that

ðli�ljÞðxli ~r
0
ðxliÞþ ~rðxliÞ�xlj ~r

0
ðxljÞ�~rðxljÞÞZ0:

That is, u~r 0ðuÞþ ~rðuÞ is increasing in u which in turn is equivalent to the assumption that u2 ~r 0ðuÞ is increasing in u. This
proves the required result. &

Remark 3.2. The inequality in (3.6) is reversed if x2 ~r 0ðxÞ is decreasing.

It is proved in Lemma A.8 in the Appendix that the conditions of Theorem 3.3 are satisfied by generalized gamma
distribution with the parameters po1 and q40. That is, the reverse hazard rate of a parallel system consisting of
independent components with GG(p,q) lifetimes is Schur convex in the vector of scales parameters, when either po1 and
qo1 (that is F is DFR) or po1 and q41 (that is F has an upside down bathtub failure rate).
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Appendix A

To prove the required results in this section the following observations are required. First, we need the following crucial
relations between r(x), the hazard rate of generalized gamma random variable and its derivative, r0ðxÞ. By definition,

rðxÞ ¼
xq�1e�xpR1

x tq�1e�tp dt
ðA:1Þ

and its derivative with respect to x is

r0ðxÞ ¼
xq�2e�xp

ðq�1�pxPÞ
R1

x tq�1e�tp
dtþðxq�1e�xp

Þ
2

ð
R1

x tq�1e�tp dtÞ2
:

Combining these, we have

x
r0ðxÞ

rðxÞ
¼ q�1�pxpþxrðxÞ ðA:2Þ

and

x
r0ðxÞ

rðxÞ

� �0
¼ rðxÞ 1�p2 xp�1

rðxÞ
þx

r0ðxÞ

rðxÞ

� �
, ðA:3Þ

where ðxr0ðxÞ=rðxÞÞ0 denote the derivative of xr0ðxÞ=rðxÞ with respect to x. Using (A.1)–(A.3), after some simplification and
manipulations we obtain the following lemma that is used to prove Lemma A.2.
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Lemma A.1. Let r(x) be the hazard rate of a generalized gamma random variable with parameters p,q40. Then

ðaÞ lim
x�!0

xp�1

rðxÞ
¼

0, qop

1, q4p

(
and lim

x�!1

xp�1

rðxÞ
¼

1

p
, ðA:4Þ

ðbÞ lim
x�!0

x
r0ðxÞ

rðxÞ
¼ q�1 and lim

x�!1
x

r0ðxÞ

rðxÞ
¼ p�1: ðA:5Þ

Lemma A.2. Let UðxÞ ¼ xp�1=rðxÞ and gðxÞ ¼ xr0ðxÞ=rðxÞ, then for all x40 and p4q we have
(i)
Ple
Pla
gðxÞ4q�1,

(ii)
 UðxÞo1=p and
(iii)
 gðxÞop�1 for all x40
where r(x) and xr0ðxÞ=rðxÞ, respectively, are defined as in (A.1) and (A.2).

Proof.
(i)
 Suppose minx40gðxÞrq�1. In this case, it follows from Lemma A.1(b) that g(x) crosses the level q�1 at least once.
That is, there exist a point n40 such that nr0ðnÞ=rðnÞ ¼ q�1. Now, it follows from (A.2) that UðnÞ ¼ 1=p. Using these
observations in (A.3), we obtain that ðn�r0ðn�Þ=rðn�ÞÞ0 ¼ rðn�Þðq�pÞo0. That is,

for xon we have x
r0ðxÞ

rðxÞ
Zq�1: ðA:6Þ

Now, first we show that if the point n exists, it is unique. It follows from Lemma A.1(b), limx�!1xr0ðxÞ=rðxÞ ¼ p�1 and
assumption p4q that the function g(x) has to cross the level q�1 at least at another point, say n� such that
ðn�r0ðn�Þ=rðn�ÞÞ040, but this is impossible, since the derivative of g(x) at crossing point n and n� is negative. Thus,
n is unique and n is the only point at which the function g(x) crosses the level q�1 and for x4n we have
xr0ðxÞ=rðxÞrq�1. But, this contradict limx�!1xr0ðxÞ=rðxÞ ¼ p�1. That is, such a point n does not exist. This proves the
required result of (i).
(ii)
 Suppose that maxx40UðxÞ41=p. From Lemma A.1(a), Uð1Þ ¼ 1=p and U(0)=0. Therefore, U(x) crosses level 1/p, from
which it follows that g(x) has to cross the level q�1. But, from (i), this is not the case. This completes the proof of (ii).
(iii)
 Suppose that maxx40xr0ðxÞ=rðxÞZp�1 Then, it follows from Lemma A.1(b) that the function g(x) must cross the level
p�1 at least once. Let m be one of the crossing points. That is mr0ðmÞ=rðmÞ ¼ p�1. Now using this in (A.3), it follows that

x
r0ðxÞ

rðxÞ

� �0
x ¼ m
¼ rðmÞ p�p2 mp�1

rðmÞ

� �
:

Now, it follows from (ii) that ðxr0ðxÞ=rðxÞÞ0=x ¼ m40. Using similar kind of arguments as used in part (i), it is easy to
show that the crossing point m is unique. Now, it follows from Lemma A.1(b) that

for xom, x
r0ðxÞ

rðxÞ
op�1 and for x4m, x

r0ðxÞ

rðxÞ
4p�1: ðA:7Þ

On the other hand,

U0ðxÞ ¼
xp�2

rðxÞ
p�1�x

r0ðxÞ

rðxÞ

� �
:

Combining these observations we obtain for xom, U0ðxÞ40 and for x4m, U0ðxÞo0, but these observations contradict
Lemma A.1(a). That is, the crossing point m does not exist, from which the required result follows. &
Remark A.1. The inequalities in (i), (ii) and (iii) of Lemma A.2 are reversed for poq.

Lemma A.3. Let X � GGðp,qÞ, p,q40, then xr(x) is an increasing function.

Proof. The derivative of xr(x) is

ðxrðxÞÞ0 ¼ rðxÞ 1þ
xr0ðxÞ

rðxÞ

� �
:

Now, the proof of the required result simply follows from Lemma A.2(i) and (iii) and Remark A.1. &

Lemma A.4. Let X � GGðp,qÞ, p,qo1, with hazard rate r(x), then x2r0ðxÞ is a deceasing function.

Proof. We prove the result for the case when qop. The proof for the case when q4p is similar and hence is omitted.
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x2r0ðxÞ ¼ ðxrðxÞÞ x
r0ðxÞ

rðxÞ

� �

derivative of this function with respect to x is

rðxÞ 1þx
r0ðxÞ

rðxÞ

� �
x

r0ðxÞ

rðxÞ
þxrðxÞ�p2 xp

1þx
r0ðxÞ

rðxÞ

2
664

3
775: ðA:8Þ

It follows from Lemma A.2 that qo1þxr0ðxÞ=rðxÞop. Now, to prove the required result we show that

LðxÞ ¼ x
r0ðxÞ

rðxÞ
þxrðxÞ�p2 xp

1þx
r0ðxÞ

rðxÞ

2
664

3
775r0: ðA:9Þ

Using the above relations, Lopital’s formula and some manipulations, we obtain that

lim
x�!0

LðxÞ ¼ q�1 ðA:10Þ

and

lim
x�!1

LðxÞ ¼ p�1: ðA:11Þ

Suppose maxx40LðxÞ40. Then, it follows from (A.10) and (A.11) that L(x) has to cross the level 0 at least twice. The
derivative of L(x) with respect to x, after some simplifications, is

L0ðxÞ ¼ rðxÞ 1þx
r0ðxÞ

rðxÞ

� �
1�

p2xp�1

rðxÞ 1þx
r0ðxÞ

rðxÞ

� �
2
664

3
775þðrðxÞþr0ðxÞxÞ�p3 xp�1

1þx
r0ðxÞ

rðxÞ

þ
p2xprðxÞ

1þx
r0ðxÞ

rðxÞ

1�
p2xp�1

rðxÞ 1þx
r0ðxÞ

rðxÞ

� �
2
664

3
775: ðA:12Þ

At any point n that LðnÞ ¼ 0, we have nr0ðnÞ=rðnÞþnrðnÞ ¼ p2np=ð1þnr0ðnÞ=rðnÞÞ. Using this in (A.12),

L0ðnÞ ¼ 1þn r0ðnÞ
rðnÞ

� �
�2

r0ðnÞ
rðnÞ
þ

1�p

1þnr0ðnÞ
rðnÞ

�
1

n
� nrðnÞþn r0ðnÞ

rðnÞ

� �0
BB@

1
CCA40:

But, this observation contradict both relations (A.10) and (A.11). That is, the function x2r0ðxÞ is a decreasing function. &

The following interesting remark can be proved using the similar arguments used to prove Lemma A.4.

Remark A.2. Let X � GGðp,qÞ, p,q41, with hazard rate r(x), then x2r0ðxÞ is an increasing function.

Lemma A.5. Let X � GGðp,qÞ, p,q40, with reverse hazard rate ~rðxÞ, then x~rðxÞ is a decreasing function.

Proof. By definition,

x~rðxÞ ¼
xqe�xpR x

0 tq�1e�tp dt
ðA:13Þ

and its derivative

ðx~rðxÞÞ0 ¼
xq�1e�xp

½q�pxp�
R x

0 tq�1e�tp
dt�xðxq�1e�xp

Þ
2R x

0 tq�1e�tp dt
� 	2

¼ ~rðxÞ½q�pxp�x~rðxÞ�: ðA:14Þ

Let cðxÞ ¼ pxpþx~rðxÞ. That is, we have to show that cðxÞZq for all x40. It is easy to see that

lim
x�!1

cðxÞ ¼1 ðA:15Þ

and

lim
x�!0

cðxÞ ¼ q: ðA:16Þ

Now, suppose minx40cðxÞoq. Then cðxÞ has to cross the level q at least once, since cð0Þ ¼ q and cð1Þ ¼1. That is, there
exist a point n40 such that cðnÞ ¼ q. Then, using this in

c0ðxÞ ¼ p2xp�1þ ~rðxÞðq�pxp�x~rðxÞÞ
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we obtain that

c0ðnÞ ¼ p2np�140:

Suppose that n is the first point that cðnÞ ¼ q. That is,

for xon we have cðxÞrq: ðA:17Þ

Then for xon, cðxÞ is increasing and cðxÞ4cð0Þ ¼ q. That is a contradiction with cðxÞoq. Then for xon, cðxÞ4q, but this is
impossible, since the derivative of cðxÞ at crossing point n is positive. That is, such a point n does not exist. This proves that
cðxÞ4q and then according to (A.14), the function x~rðxÞ is decreasing and the required result is proved. &

The following lemma for power-generalized Weibull distribution can be proved using similar kind of arguments used
above.

Lemma A.6. Let X � PGWðn,gÞ, n,g40, with reverse hazard rate ~rðxÞ, then x~rðxÞ is a decreasing function.

Lemma A.7. Let ~rðxÞ be the hazard rate of a generalized gamma random variable with shape parameters p,q40. Then

ðaÞ lim
x�!0

x~rðxÞ ¼ q and lim
x�!1

x~rðxÞ ¼ 0, ðA:18Þ

ðbÞ lim
x�!0

x
~r 0ðxÞ
~rðxÞ
¼ �1 and lim

x�!1
x
~r 0ðxÞ
~rðxÞ
¼ �1: ðA:19Þ

Proof. The reverse hazard rate of GG(p,q) is

~rðxÞ ¼
xq�1e�xpR x

0 tq�1e�tp dt
, ðA:20Þ

its derivative with respect to x is

~r 0ðxÞ ¼
xq�2e�xp

ðq�1�pxPÞ
R x

0 tq�1e�tp
dt�ðxq�1e�xp

Þ
2R x

0 tq�1e�tp dt
� 	2

:

Combining these observation, we have

x
~r 0ðxÞ
~rðxÞ
¼ q�1�pxp�x~rðxÞ ðA:21Þ

and

x
~r 0ðxÞ
~rðxÞ

� �0
¼ ~rðxÞ �1�p2 xp�1

~rðxÞ
�x

~r 0ðxÞ
~rðxÞ

� �
, ðA:22Þ

where ðxr0ðxÞ=rðxÞÞ0 denote the derivative of x~r 0ðxÞ=~rðxÞ with respect to x. Now the required results follow from similar kind
of arguments used to prove Lemma A.1. &

Lemma A.8. Let X � GGðp,qÞ, po1, with reverse hazard rate ~rðxÞ, then x2 ~r 0ðxÞ is an increasing function.

Proof. Derivative of negative function

x2 ~r 0ðxÞ ¼ ðx~rðxÞÞ x
~r 0ðxÞ
~rðxÞ

� �

with respect to x is

~rðxÞ 1þx
~r 0ðxÞ
~rðxÞ

� �
x
~r 0ðxÞ
~rðxÞ
�x~rðxÞ�p2 xp

1þx
~r 0ðxÞ
~rðxÞ

2
664

3
775: ðA:23Þ

In Lemma A.5 we proved that x~rðxÞ is decreasing from which it follows that x~r 0ðxÞ=~rðxÞo�1. Now we prove that

LðxÞ ¼ x
~r 0ðxÞ
~rðxÞ
�x~rðxÞ�p2 xp

1þx
~r 0ðxÞ
~rðxÞ

2
664

3
775r0, ðA:24Þ

which completes the proof of required result. Using (A.21) in (A.24), for p4q, we obtain that

lim
x�!0

LðxÞ ¼ p�1r0: ðA:25Þ
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On the other hand, part(a) of Lemma A.7 implies that

lim
x�!1

LðxÞ ¼�1: ðA:26Þ

Suppose maxx40LðxÞ40. Then, it follows from (A.25) and (A.26) that L(x) has to cross the level 0 at least twice. The
derivative of L(x) with respect to x is

L0ðxÞ ¼ �p2 xp�1

1þx
~r 0ðxÞ
~rðxÞ

1þx
~r 0ðxÞ
~rðxÞ

� �
�2~rðxÞ 1þx

~r 0ðxÞ
~rðxÞ

� �
�p3 xp�1

1þx
~r 0ðxÞ
~rðxÞ

1þx
~r 0ðxÞ
~rðxÞ

� �
�p4 x2p�1

1þx
~r 0ðxÞ
~rðxÞ

1þx
~r 0ðxÞ
~rðxÞ

� �

�p2 xp�1 ~rðxÞ

1þx
~r 0ðxÞ
~rðxÞ

1þx
~r 0ðxÞ
~rðxÞ

� �
: ðA:27Þ

At any point n, where LðnÞ ¼ 0, we have n~r 0ðnÞ=~rðnÞþn~rðnÞ ¼ p2np=ð1þn~r 0ðnÞ=~rðnÞÞ. Using this observation in (A.27),

L0ðnÞ ¼�2 1þn
~r 0ðnÞ
~rðnÞ

� �
~r 0ðnÞ
~rðnÞ
þð1�pÞ n

~r 0ðnÞ
~rðnÞ
�~rðnÞ

� �
o0:

But, this observation contradict both relations (A.25) and (A.26). That is, the function x2 ~r 0ðxÞ is an increasing function. &
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