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Abstract

In this note, we further study the properties of excess wealth (or right spread)

order and the location independent riskier order. It is proved that if X is less variable

than Y according to excess wealth order, then Xn: n − Xk: n ≤icx Yn: n − Yk: n for

k = 0, 1, · · · , n−1, where X0: n = Y0: n ≡ 0. Similar results are obtained for location

independent riskier order. An application in k-price business auction models is

presented as well.
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1 Introduction and motivation

The concept of variability is a basic one in statistics, probability and many other related

areas, such as reliability theory, business, economics and actuarial science, among others.
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Most of the classical methods for variability comparisons are based only upon summary

statistics such as variance and standard deviation which are usually quite noninformative

though they are convenient to be dealt with. In the past two decades, several more refined

stochastic orders which compare variabilities of random variables based on their entire

distribution functions, have been introduced in the literature. Shaked and Shanthiku-

mar (1994) and Müller and Stoyan (2002) present comprehensive discussions on most of

those concepts and their properties. In this note, we further study some properties of a

variability order, known as excess wealth order or right spread order as described below.

Let X and Y be two random variables with their distribution functions F and G and

survival functions F̄ = 1 − F and Ḡ = 1 − G, respectively. Denote by F−1 and G−1

their corresponding right continuous inverses. A basic concept for comparing variability

or spread between two probability distributions is that of dispersive ordering. X is said

to be less dispersed than Y , written as X ≤disp Y or F ≤disp G, if F−1(β) − F−1(α) ≤
G−1(β)−G−1(α) for all 0 < α ≤ β < 1. Muñoz-Perez (1990) proved that

X ≤disp Y ⇐⇒ (X − F−1(p))+ ≤st (Y −G−1(p))+, for every p ∈ (0, 1), (1)

where (Z)+ = max{Z, 0} and the stochastic ordering X ≤st Y holds in the sense that

F̄ (x) ≤ Ḡ(x) for all x. Based on this observation, Fernandez-Ponce et al. (1998) proposed

the right spread ordering, which is implied by dispersive ordering and hence is a weaker

variability order.

Definition 1 X is said to be less right spread out than Y (X ≤RS Y ) if

E[(X − F−1(p))+] ≤ E[(Y −G−1(p))+], for every p ∈ (0, 1), (2)

provided the expectations exist. Or equivalently, if∫ ∞

F−1(p)

F̄ (x) dx ≤
∫ ∞

G−1(p)

Ḡ(x) dx, for every p ∈ (0, 1). (3)

This ordering was also independently studied in Shaked and Shanthikumar (1998) and

was called as excess wealth ordering. Refer to Kochar et al. (2002) and Li and Shaked

(2004) for its further properties.

Recall that X is said to be smaller than Y in the increasing convex order (denoted by

X ≤icx Y ) if ∫ +∞

t

F̄ (x) dx ≤
∫ +∞

t

Ḡ(x) dx, for all t.

Note that X ≤st Y =⇒ X ≤icx Y , Belzunce (1999) developed the following useful char-

acterization of the right spread order in terms of the increasing convex order,

X ≤RS Y ⇐⇒ (X − F−1(p))+ ≤icx (Y −G−1(p))+, for all p ∈ (0, 1).
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The right hand side inequality is equivalent to∫ ∞

t

F̄ (x + F−1(p)) dx ≤
∫ ∞

t

Ḡ(x + G−1(p)) dx, for all p ∈ (0, 1) and t. (4)

In order to compare two random assets in economics, Jewitt (1989) introduced the loca-

tion independent riskier order as below, which is dual to the concept of excess wealth order

and is also of interest in rank dependent expected utility frame work, see Chateauneuf et

al.(2004).

Definition 2 X is said to be smaller than Y in the location independent riskier order

(denoted by X ≤lir Y ) if∫ F−1(p)

−∞
F (x) dx ≤

∫ G−1(p)

−∞
G(x) dx, for all p ∈ (0, 1). (5)

It is of interest to study how a variability ordering between two probability distribu-

tions affects the relative positioning of the corresponding observations in random samples

from the two distributions. Let X1: n ≤ X2: n ≤ · · · ≤ Xn: n be the order statistics of a

random sample X1, X2, . . . , Xn on X. Similarly, denote by Y1: n ≤ Y2: n ≤ · · · ≤ Yn: n the

order statistics of a random sample Y1, Y2, . . . , Yn on Y . Let Ui: n ≡ Xi: n − Xi−1: n and

Vi: n ≡ Yi: n − Yi−1: n be the respective i-th sample spacings with X0: n = Y0: n ≡ 0, for

i = 1, · · · , n. Bartoszewicz (1986) proved that

X ≤disp Y =⇒ (U1: n, · · · , Un: n) ≤st (V1: n, · · · , Vn: n), (6)

which implies

Xj: n −Xi: n ≤st Yj: n − Yi: n, for 1 ≤ i < j ≤ n. (7)

This paper further investigates this problem and extends the implication in (7) when

dispersive ordering between X and Y is replaced by either the excess wealth order or

the location independent riskier order. It is shown in Section 2 that X ≤ew Y implies

Xn: n −Xk: n ≤icx Yn: n − Yk: n for 1 ≤ k ≤ n − 1. A parallel result is proved in the case

of the location independent riskier order. In particular, we will notice that the sample

ranges are ordered according to the increasing convex order when the parent distributions

are ordered according to the excess wealth order or the location independent riskier order.

Some applications of these two results in the theory of reliability and business auction

model are presented in Sections 2 and 3.

For the sake of convenience, throughout this note, the term increasing is used for

monotone nondecreasing and decreasing is used for monotone non-decreasing. It is as-

sumed in the sequel that all random variables involved are absolutely continuous and

expectations exist when used.
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2 Main results

The main results of this note are contained in the next two theorems.

Theorem 3 If X ≤RS Y , then,

Xn: n −Xk: n ≤icx Yn: n − Yk: n, for k = 0, 1, · · · , n− 1. (8)

Proof The case k = 0 is proved in Kochar et al. (2002). Note that, for 1 ≤ r < s ≤ n,

the distribution Xs: n given Xr: n = x is the same as that of the (s− r)-th order statistic

in a random sample of size (n− r) from a distribution with pdf f(y)/F̄ (x) for y ≥ x. The

survival function of Xn: n −Xk:n is

H̄F (y) = P [Xn: n −Xk: n ≥ y]

=

∫ ∞

0

P [Xn: n −Xk: n ≥ y|Xk: n = x] dFk: n(x)

= C(k, n)

∫ ∞

0

[
1−

{
F̄ (x)− F̄ (x + y)

F̄ (x)

}n−k
]

F k−1(x)F̄ n−k(x) dF (x)

= C(k, n)

∫ ∞

0

[
F̄ n−k(x)−

{
F̄ (x)− F̄ (x + y)

}n−k
]
F k−1(x) dF (x)

= C(k, n)

∫ 1

0

pk−1
[
(1− p)n−k − {F̄ (y + F−1(p))− p}n−k

]
dp,

where C(k, n) is a constant.

We have to prove that under the assumption of X ≤RS Y ,∫ ∞

x

H̄F (y)dy ≤
∫ ∞

x

H̄G(y) dy. (9)

By the characterization (4), X ≤RS Y is equivalent to∫ ∞

t

[
F

(
x + F−1(p)

)
−G

(
x + G−1(p)

)]
dx ≥ 0 for all x ≥ 0.

Since

h(y, p) =
n−k−1∑

i=0

[
F

(
y + F−1(p)

)
− p

]i [
G

(
y + G−1(p)

)
− p

]n−k−1−i

is nonnegative and increasing in x for any fixed p ∈ (0, 1), by Lemma 7.1(a) of Barlow

and Proschan (1981), it holds that for any t and p ∈ (0, 1),∫ ∞

t

[
F

(
y + F−1(p)

)
−G

(
y + G−1(p)

)]
h(y, p) dy ≥ 0.
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That is, ∫ ∞

t

{[
F

(
y + F−1(p)

)
− p

]n−k −
[
G

(
y + G−1(p)

)
− p

]n−k
}

dy ≥ 0.

Thus,∫ 1

0

pk−1

∫ ∞

t

{[
F

(
y + F−1(p)

)
− p

]n−k −
[
G

(
y + G−1(p)

)
− p

]n−k
}

dy dp ≥ 0.

Interchanging the order of integration, this becomes, for all t,∫ ∞

t

∫ 1

0

pk−1
{[

F
(
y + F−1(p)

)
− p

]n−k −
[
G

(
y + G−1(p)

)
− p

]n−k
}

dp dy ≥ 0,

which is equivalent to∫ ∞

t

∫ 1

0

{
(1− p)n−k −

[
F

(
y + F−1(p)

)
− p

]n−k
}

pk−1 dp dy

≤
∫ ∞

t

∫ 1

0

{
(1− p)n−k −

[
G

(
y + G−1(p)

)
− p

]n−k
}

pk−1 dp dy,

which in turn is equivalent to (9). This proves the desired result.

As observed in Belzunce (1999) and Fagiuoli et al. (1999),

X ≤lir Y if and only if −X ≤RS −Y.

By Theorem 3, if X ≤lir Y , we have, for 1 ≤ k ≤ n,

(−X)n: n − (−X)k−1: n ≤icx (−Y )n: n − (−Y )k−1: n.

Since (−X)n: n − (−X)k: n
st
= Xn−k+1: n −X1: n, for all 1 ≤ k ≤ n, the next result parallel

to Theorem 3 follows immediately.

Theorem 4 If X ≤lir Y , then,

Xk: n −X1: n ≤icx Yk: n − Y1: n, for k = 2, · · · , n. (10)

Specifically, setting k = n in (8) and (10), respectively, we immediately have the

following corollary.

Corollary 5 If X ≤RS Y or X ≤lir Y , then, Xn: n −X1: n ≤icx Yn: n − Y1: n for n ≥ 1.
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Recall that X is NBUE (new better than used in expectation) if and only if X ≤ew Y ,

where Y is exponential with the same mean as that of X (see Belzunce, 1999). It follows

directly from Theorem 3 that, if X1, . . . , Xn is a random sample from a distribution which

is NBUE, then,

E[Xn: n −Xk: n] ≤
[
1 + · · ·+ 1

n− k

]
E[X], for any 1 ≤ k ≤ n− 1.

In the literature on applied probability and statistics, many authors have examined the

effect of relative aging of two distributions on the variability of their sample observations.

See for example, Barlow and Proschan (1981) and Kochar and Wiens (1987), among

others. Recall that X is said to be star-shaped with respect to Y and denoted by X ≤∗ Y

if, G−1F (t)/t is increasing in t. In this case we also say that X is more IFRA (increasing

failure rate average) than Y . For the properties of star-shaped ordering, please refer to

Barlow and Proschan (1981) and Müller and Stoyan (2002). Bartoszewicz (1998) claimed

in Corollary 2 that

X ≤∗ Y =⇒ E[Xn: n −X1: n]

E[X1]
≤ E[Yn: n − Y1: n]

E[Y1]
. (11)

Further, Li and Zuo (2004) successfully relaxed the star-shaped ordering assumption in

(11) to the NBUE (new better than used in expectation) ordering X ≤nbue Y (Kochar

and Wiens , 1987). Note that star ordering implies NBUE ordering. Taking into account

the fact that

X ≤nbue Y ⇐⇒ X

E[X]
≤RS

Y

E[Y ]
,

(Kochar et al. 2002), the next corollary follows directly from Theorem 3 and thus presents

a more general version of the moment inequality in (11).

Corollary 6 X ≤nbue Y =⇒ Xn: n −Xk: n

E[X]
≤icx

Yn: n − Yk: n

E[Y ]
, for all 1 ≤ k ≤ n− 1.

Another useful notion of variability is the dilation order, which was studied in Belzunce

et al. (1997). X is said to be smaller than Y in the dilation order (denoted by X ≤dil Y ),

if Eφ(X−EX) ≤ Eφ(Y −EY ) for all convex functions φ. Readers can refer to Fagiuoli et

al. 1999) for other details. In particular, they have shown that X ≤ew Y =⇒ X ≤dil Y ,

from which one can prove that if the supports of X and Y are bounded from below and

`X , `Y , their left end points of the supports satisfy `X ≤ `Y , then,

X ≤ew Y =⇒ X ≤icx Y. (12)
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On the other hand, Fagiuoli et al. (1999) proved that

X ≤lir Y =⇒ X ≤dil Y. (13)

In view of (12) and (13), one may wonder whether Theorems 3 and 4 are still valid

with the excess wealth order and the location independent riskier order replaced by the

increasing convex order and the dilation order, respectively. The following example gives

a negative answer.

Example 7 (Shaked and Shanthikumar, 1994) For a fixed ε ∈ (0, 1
3
) and a number

M ≥ 2, let X assign probability masses ε, 2
3

and 1
3
− ε at the points 0, 1 and M ,

respectively. Let Y assign probability masses 1
3
+ ε, 1

3
and 1

3
− ε at the points 0, 2 and M ,

respectively. It is obvious that E[X] = E[Y ]. In Example 3.9 (Shaked and Shanthikumar,

1998), it is stated that X ≤cx Y but X 6≤RS Y for larger number M . Direct evaluation

also reveals that X ≤dil Y .

It can be easily evaluated that∫ ∞

0

F 2(x)F̄ (x) dx = ε2(1− ε) +

(
2

3
+ ε

)2 (
1

3
− ε

)
(M − 1),

∫ ∞

0

G2(x)Ḡ(x) dx = 2ε

(
1

3
+ ε

)2

+

(
2

3
+ ε

)2 (
1

3
− ε

)
(M − 2).

Then,

E(Y3:3 − Y2:3)− E(X3:3 −X2:3) = −4

9
+

2

3
ε + 4ε2 + 12ε3,

which is negative for smaller ε ≥ 0. So, neither the convex order nor the increasing convex

order imply (8).

On the other hand,∫ ∞

0

F (x)F̄ 2(x) dx = ε(1− ε)2 +

(
2

3
+ ε

) (
1

3
− ε

)2

(M − 1),

∫ ∞

0

G(x)Ḡ2(x) dx = 2

(
1

3
+ ε

) (
2

3
− ε

)2

+

(
2

3
+ ε

) (
1

3
− ε

)2

(M − 2).

Then, as ε → 1
3
,

E(Y2:3 − Y1:3)− E(X2:3 −X1:3) =
2

3
− ε− 6ε2 + 6ε3 → −1

9
.

As a result, for some ε near 1
3
, the above difference may be negative. That is, the dilation

order X ≤dil Y is not a sufficient condition for (10) to hold.
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3 An application in auction theory

In an auction with a setup in which a seller and a number of buyers gather to the auction

of some good, all bidders respectively submit their own bids for the good, which are

known only to themselves. The most favorable one will be awarded the good at a price

that is some function of the submitted bids. Let X1, · · · , Xn be the sample of bidders’

valuations. If prices are bid in an ascending sequence by individual bidders until only one

bidder remains, the highest one, and the price paid by the winner is the (n − k + 1)-th

largest price reached in the sequence, this is called a k-price buyer’s auction. The rent of

the winner, which is the difference between the largest price reached and the k-th largest

price reached from bidders, can be characterized as the sample spacing Xn: n −Xk: n. If

the prices are bid in an descending sequence by individual bidders until only one bidder

remains, the lowest bidder, who is awarded the good at a price corresponding to the k-th

largest price reached in the sequence, this is called a k-price reverse auction. The rent

of the winner is then the sample spacing Xk: n − X1: n, the difference between the k-th

smallest price and the smallest one from bidders.

Typically, the first price auction with k = 1 and the second price auction with k = 2

are very popular in practical situations. Monderer and Tennenholtz (2000) suggested

that such auctions may play an important role in the new economics evolving in the

internet and are widely used as a selling mechanism for relatively cheap items like TV

sets or computer products. Paul and Gutierrez (Theorem 4, 2004) proved that, with the

assumption of E[X] = E[Y ],

X ≤∗ Y =⇒ E[Xk: n −Xk−1: n] ≤ E[Yk: n − Yk−1: n], k = 1, 2, · · · , n,

and hence

E[Xk: n −X1: n] ≤ E[Yk: n − Y1: n], E[Xn: n −Xk: n] ≤ E[Yn: n − Yk: n].

This claims that an increase of the bid in the sense of star-shaped order will result in an

increase of the expected winner’s rent in both the k-price buyer’s auction and the k-price

reverse auction. Recently, Li (2005) further showed that

X ≤RS Y =⇒ E[Xn: n −Xn−1: n] ≤ E[Yn: n − Yn−1: n],

which states that in the second price buyer’s auction an increase of the bid in the sense

of the right spread order results in an increase in the expected winner’s rent.

According to Theorems 3 and 4 in Section 2, we draw the stronger conclusions that in

a k-price buyer’s auction, an increase of the bid in the sense of excess wealth order will
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result in an increase of the winner’s rent in the sense of increasing convex order. And in

a k-price reverse auction, an increase of the bid in the sense of the location independent

riskier order will result in an increase of the winner’s rent in the sense of increasing convex

order as well.
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[17] Muñoz-Perez, J. (1990) Dispersive ordering by the spread function. Statistics and

Probability Letters 10, 407-410

[18] Paul, A. and Gutierrz, G. (2004) Mean sample spacings, sample size and vaiability

in auction-theoretic framework. Operation Research Letter 32, 103-108.

[19] Shaked, M. and Shanthikumar, J. G. (1994) Stochastic Orders and Their Applica-

tions. Academic Press, San Diago.

[20] Shaked, M. and Shanthikumar, J. G. (1998) Two variability orders. Probability in

the Engineering and Informational Science 12, 1-23.

10


