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This paper first reviews some recent developments on dependence among order statistics. Some

new results on order statistics from bivariate models are discussed as well.
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1 Introduction

Let X1:n ≤ X2:n ≤ · · · ≤ Xn:n denote the order statistics of random variables X1, X2, · · · , Xn. In the

reliability theory context, Xn−k+1:n denotes the lifetime of a k-out-of-n system. In particular, the parallel

and series systems are 1-out-of-n and n-out-of-n systems. Order statistics have received a tremendous

amount of attention from many researchers since they play an important role in reliability, data analysis,

goodness-of-fit tests, statistical inference and other applied probability areas. Please refer to David and

Nagaraja (2003) and Balakrishnan and Rao (1998a, 1998b) for more details.

Due to the wide applications, the nature of dependence that may exist between order statistics has

received much attention. If X1, . . . , Xn are independent and identical random variables, Bickel (1967)
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first showed that

Cov(Xi:n, Xj:n) ≥ 0.

This topic has been followed and developed by many researchers including Karlin and Rinott (1980),

Kim and David (1990), Boland, et al. (1996), Avérous (2005), Hu and Xie (2006) and Dubhashi and

Häggström (2008), among others.

In this paper, we first review some recent developments on dependence among order statistics. Then,

we present some new results on dependence among order statistics based on dependent random variables.

The rest part of this paper is organized as follows. In Section 2, we recall some dependence notions used

in the paper. In Section 3, we review recent results on dependence among order statistics. In Section 4,

two common measures of dependence for order statistics are discussed. In Section 5, the topic of relative

degree of dependence among order statistics is reviewed, and some new results on dependence among

order statistics based on dependent random variables are also developed. In the last section, we mention

some open problems in this area.

2 Preliminaries

In this section, we review some dependence notions, which will be used in the sequel.

The following definitions can be found in Chapter 5 of Barlow and Proschan (1981).

Definition 2.1 Given two random variables X and Y , we say the following:

(a) Y is stochastically increasing in X, denoted by SI(Y |X), if P (Y > y | X = x) is increasing in x for

all y; or equivalently,

P (Y ≤ y|X = x) ≥ P (Y ≤ y|X = x∗), x ≤ x∗. (2.1)

(b) Y is right tail increasing in X, denoted by RTI(Y |X), if P (Y > y | X > x) is increasing in x for all

y.

(c) Y is left tail decreasing in X, denoted by LTD(Y |X), if P (Y ≤ y | X ≤ x) is decreasing in x for all

y.

For more dependence concepts, please refer to Joe (1997) and Nelsen (2006) for a comprehensive

discussion.

Observing that when X and Y are continuous, inequality (2.1) can be written as

H[ξq ] ◦H
−1
[ξp]

(u) ≤ u

where ξp = F−1(p) stands for the pth quantile of the marginal distribution of X, and H[s] denotes the

conditional distribution of Y given X = s. Avérous, et al. (2005) proposed the following definition to

measure the relative degree of monotone dependence between two pairs of bivariate random variables

(X1, Y1) and (X2, Y2).

Definition 2.2 Y1 is said to be less stochastic increasing in X1 than Y2 is in X2, denoted by (Y1|X1) �SI

(Y2|X2), if and only if, for 0 ≤ u ≤ 1, and 0 < p ≤ q < 1,

H2[ξ2q ] ◦H
−1
2[ξ2p]

(u) ≤ H1[ξ1q ] ◦H
−1
1[ξ1p]

(u),
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where ξip = F−1i (p) stands for the pth quantile of the marginal distribution of Xi, and Hi[s] denotes the

conditional distribution of Yi given Xi = s, for i = 1, 2.

Dolati, et al. (2008) proposed the following weaker dependence order based on RTI criteria, called

more RTI order.

Definition 2.3 Y1 is said to be less right-tail increasing (RTI) in X1 than Y2 is in X2, denoted by

(Y1|X1) �RTI (Y2|X2), if and only if, for 0 ≤ u ≤ 1, and 0 < p ≤ q < 1,

H∗2[ξ2q ] ◦H
∗−1
2[ξ2p]

(u) ≤ H∗1[ξ1q ] ◦H
∗−1
1[ξ1p]

(u),

where ξip = F−1i (p) stands for the pth quantile of the marginal distribution of Xi, and H∗i[s] denotes the

conditional distribution of Yi given Xi > s, for i = 1, 2.

It is easy to see that both more SI order and more RTI order are copula-based orders, and more SI order

implies more RTI order which in turn implies more concordance ordering (that is, the two copulas are

ordered). For the concept of copula, please refer to Nelsen (2006) for more details.

As observed in Avérous, et al. (2005) and Genest et al. (2009), there is a close connection between

the above concepts of more dependence and the notion of dispersive ordering.

We shall also use the following notion of multivariate stochastic ordering.

Definition 2.4 The random vector X = (X1, . . . , Xn) is said to be smaller than another random vector

Y = (Y1, . . . , Yn) (denoted by X�stY) according to the multivariate stochastic ordering if

E[φ(X)] ≤ E[φ(Y)]

for all increasing functions φ. It is known that multivariate stochastic order implies component-wise

stochastic order. For more details on the multivariate stochastic orders, see Shaked and Shanthikumar

(2007) and Müller and Stoyan (2002).

3 Order statistics based on independent observations

Before we review the main results on dependence among order statistics, we first recall the proportional

hazard rates (PHR) model.

Independent random variables X1, X2, . . . , Xn are said to follow the PHR model if for i = 1, 2, . . . , n,

the survival function of Xi can be expressed as,

F i(x) = [F (x)]λi , for λi > 0, (3.1)

where F (x) is the survival function of some random variable X. If r(t) denotes the hazard rate corre-

sponding to the base line distribution F , then the hazard rate of Xi is λir(t), i = 1, 2, . . . , n. We can

equivalently express (3.1) as

F i(x) = e−λiR(x), i = 1, 2, . . . , n

where R(x) =
∫ x
0
r(t)dt, is the cumulative hazard rate of X. Many well-known models are special cases

of the PHR model, such as Weibull, Pareto and Lomax.

Boland et al. (1996) studied in detail the dependence properties of order statistics. They proved the

following dependence result for the PHR model.
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Theorem 3.1 Let X1, . . . , Xn be independent random variables with differentiable densities and follow

the PHR model on an interval. Then Xi:n is SI in X1:n.

They also gave a counterexample to illustrate that, in general, Xi:n is not SI in X1:n. However, they

showed that for 1 ≤ i < j ≤ n, Xj:n is RTI in Xi:n.

Theorem 3.2 Let X1, . . . , Xn be independent random variables. Then for any i ≤ j, RTI(Xj:n|Xi:n)

and LTD(Xi:n|Xj:n).

They showed with the help of a counter example that, in general, the relation RTI(Xi:n|Xj:n) may not

hold for i < j.

This topic has been further developed by Hu and Xie (2006), where they exploited the negative

dependence of occupancy numbers in the balls and bins experiment. They proved the following result.

Theorem 3.3 Let X1, . . . , Xn be independent random variables. For 1 ≤ i ≤ j1 ≤ j2 ≤ . . . ≤ jr ≤ n,

and (x1, . . . , xn) ∈ Rn,

(a) if Ai,n,y = {Xi:n > y}, then

P (Xj1 > x1, . . . , Xjr > xr | Ai,n,y) (3.2)

is increasing in y;

(b) if event Ai,n,y is either {Xi:n > y} or {Xi:n ≤ y}, then the conditional probability in (3.2) is

decreasing in i for each y; and

(c) if each Xk has a continuous distribution function, and if Ai,n,y is either {Xi:n = y} or {Xi−1:n <

y < Xi:n}, then (3.2) is decreasing in i for each y, where X0:n ≡ −∞.

Dubhashi and Häggström (2008) further extended the above result to the multivariate stochastic

comparisons.

Theorem 3.4 Let X1, . . . , Xn be independent random variables. Then

[(Xi:n, . . . , Xn:n)|Xi:n > y] �st [(Xi:n, . . . , Xn:n)|Xi:n > y′] , y ≤ y′.

Subsequently, Theorem 3.3 was further extended by Hu and Cheng (2008) as follows.

Theorem 3.5 Let X1, . . . , Xn be independent random variables.

(a) If j − i ≥ max{n−m, 0}, then

P (Xj:n > x1, Xj+1:n > x2, . . . , Xn:n > xn−j+1 | Xi:m > y)

is increasing in y for all (x1, . . . , xn−j+1) ∈ Rn−j+1;

(b) If j − i ≤ min{n−m, 0}, then

P (X1:n ≤ x1, X2:n ≤ x2, . . . , Xj:n ≤ xn−j+1 | Xi:m ≤ y)

is decreasing in y for all (x1, . . . , xj) ∈ Rj .
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Recently, Zhuang, et al. (2010) discussed the dependence among order statistics in the sense of

multivariate stochastic comparisons, which extends the results in Hu and Cheng (2008) and Dubhashi

and Häggström (2008).

Theorem 3.6 Let X1, . . . , Xn be independent random variables.

(a) If j − i ≥ max{n−m, 0}, then

[(Xj:n, . . . , Xn:n)|Xi:m > y] �st [(Xj:n, . . . , Xn:n)|Xi:m > y′] , y ≤ y′.

(b) If j − i ≤ min{n−m, 0}, then

[(X1:n, . . . , Xj:n)|Xi:m ≤ y] �st [(X1:n, . . . , Xj:n)|Xi:n ≤ y′] , y ≤ y′.

4 Kendall’s τ and Spearman’s ρ for order statistics

Two popular nonparametric measures of association for bivariate random variables are Kendall’s τ and

Spearman’s ρ, which measure different aspects of the dependence structure. In terms of dependence

properties, Spearman’s ρ is a measure of average quadrant dependence, while Kendall’s τ is a measure of

average likelihood ratio dependence (Nelsen, 1992 and Fredricks and Nelsen, 2007).

Avérous, et al. (2005) made an important observation that in the case of a random sample from a

continuous distribution with cdf F , the copula of a pair of order statistics is independent of the parent

distribution F . As a result the value of any copula based measure of dependence like Kendall’s tau or

Spearman’s coefficient for any pair of order statistics (Xi:n, Xj:n) will be the same for all continuous

distributions F . Schmitz (2004) derived the following formulas:

τ(X1:n, Xn:n) =
1

2n− 1
, (4.1)

and

ρ(X1:n, Xn:n) = 3− 12n(
2n
n

) n∑
k=0

(−1)k

2n− k

(
2n

n+ k

)
+ 12

(n!)3

(3n)!
(−1)n. (4.2)

Li and Li (2007) proved a conjecture in Schmitz (2004) that

ρ(X1:n, Xn:n)

τ(X1:n, Xn:n)
−→ 3

2
, n −→∞. (4.3)

Avérous, et al. (2005) used a combinatorial approach to prove the following formula of Kendall’s τ

for any pair of order statistics from the same continuous distribution:

τ(Xi:n, Xj:n) = 1− 2(n− 1)

2n− 1

(
n− 2

i− 1

)(
n− i− 1

j − i− 1

) n−j∑
s=0

i−1∑
r=0

(
n

r

)(
n− r
s

)
/

(
2n− 2

n− j + s, r + i− 1

)
.

Subsequently, Chen (2007) developed three new formulas to compute ρ(X1:n, Xn:n):

ρ(X1:n, Xn:n) = 3(1− 4an),

where an can be computed by any one of the following formulas.
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(a) Formula 1:

an = n(n− 1)

∫ 1

0

∫ t

0

(1− s)ntn(t− s)n−2dsdt;

(b) Formula 2:

an =

n∑
k=0

(−1)k
(
n
k

)(
n+k
k

) n+ k

2n+ k
;

(c) Formula 3:

an =
n(n− 1)

(3n)!

n∑
j=0

n!

j!

n∑
k=0

n!

k!
(n− 2 + j + k)!.

He further showed the following compound inequality:

3(2n− 1)(14n2 + 15n+ 3)

56n3 + 86n2 + 43n+ 7
≤ ρ(X1:n, Xn:n)

τ(X1:n, Xn:n)
≤ 3(2n− 1)(14n2 − 13n+ 2)

56n3 − 82n2 + 39n− 6
,

from which, Eq. (4.3) follows immediately.

Recently, Navarro and Balakrishnan (2010) have also studied this problem and have obtained alternate

expressions for computing these measures of dependence.

5 Relative dependence between pairs of order statistics

5.1 Order statistics based on independent observations

Assume that X1, . . . , Xn are independent and identically random variables. When the parent distribution

has an increasing hazard rate and a decreasing reverse hazard rate, Tukey (1958) showed that

Cov(Xi′:n, Xj′:n) ≤ Cov(Xi:n, Xj:n) (5.1)

for either i = i′ and j ≤ j′; or j = j′ and i′ ≤ i. It is interesting to mention that Kim and David (1990)

proved that if both the hazard and the reverse hazard rates of the Xi’s are increasing, then inequality

(5.1) remains valid when i = i′ and j ≤ j′; However, the inequality (5.1) is reversed when j = j′ and

i′ ≤ i. Avérous, et al. (2005) used the more SI concept to study the relative degree of dependence

between two pairs of random variables. They proved the following result.

Theorem 5.1 Let X1:n ≤ . . . Xn:n and X1:n′ ≤ . . . Xn′:n′ be the order statistics associated with two

independent random samples of sizes n and n′ from the same continuous distribution. Then, for 1 ≤ i ≤
j ≤ n, 1 ≤ i′ ≤ j′ ≤ n′, and i′ ≤ i, j − i ≤ j′ − i′, n− i ≤ n′ − i′, n′ − j′ ≤ n− j, it holds that

(Xj′:n′ |Xi′:n′) �SI (Xj:n|Xi:n).

As a direct consequence, we have the following result.

Corollary 5.2 Let X1:n ≤ . . . Xn:n be order statistics from the same continuous distribution. Then,

(a) (Xk:n|Xi:n) �SI (Xj:n|Xi:n) for 1 ≤ i < j < k ≤ n;

(b) (Xj:n|Xi:n) �SI (Xj+1:n+1|Xi+1:n+1) for 1 ≤ i < j ≤ n;

(c) (Xn+1:n+1|X1:n+1) �SI (Xn:n|X1:n) for n ≥ 2.
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It can be seen from the above result that the dependence between the components of a pair (Xj:n, Xi:n)

of order statistics, decreases in the sense of SI ordering as i and j get further apart. An outline of the

proof of Theorem 5.1 is given in the Appendix. This proof is shorter and more elegant than the original

proof of Avérous, et al. (2005).

Remark 5.1 Since the copula of a pair of order statistics of a random sample is independent of the

parent distribution and since the concept of more SI is copula based, it follows that in Theorem 5.1 and

Corollary 5.2, the two samples could be from different distributions.

As explained in Avérous, et al. (2005), the following result follows immediately from Theorem 5.1.

Corollary 5.3 Under the assumptions of Theorem 5.1, we have

κ(Xj′:n′ , Xi′:n′) ≤ κ(Xj:n, Xi:n) (5.2)

where κ(X,Y ) represents Spearman’s rho, Kendall’s tau, Gini’s coefficient, or indeed any other copula-

based measure of concordance satisfying the axioms of Scarsini (1984).

The case of independent but nonidentically distributed random variables

Bapat and Beg (1989) studied the distribution theory of order statistics when the parent observations

are independent but nonidentically distributed. Sathe (1988) proved that if X1, . . . , Xn are independent

exponential random variables with distinct parameters λ1, λ2, . . . , λn, then for any k = 2, . . . , n, the

Peasrson coefficient of correlation between Xk:n and X1:n is maximum when the λi’s are equal. The

natural question is to see if we can extend this result to positive dependence orderings? Dolati, et

al. (2008) further studied this topic for order statistics from heterogeneous samples. They proved the

following result for extreme order statistics.

Theorem 5.4 Let X1, . . . , Xn be independent continuous random variables following the PHR model.

Let Y1, . . . , Yn be i.i.d. continuous random variables, then

(Xn:n|X1:n) ≺RTI (Yn:n|Y1:n).

They also wondered whether this result can be strengthened to more SI ordering. Genest, et al. (2009)

gave a positive answer to this question by showing the following result.

Theorem 5.5 Let X1, . . . , Xn be independent continuous random variables following the PHR model.

Let Y1, . . . , Yn be i.i.d. continuous random variables, then

(Xn:n|X1:n) ≺SI (Yn:n|Y1:n).

5.2 Order statistics from exchangeable random variables

Most of the work in the literature on dependence of order statistics has been based on the assumption that

the underlying random variables are independent. However, in practice, the underlying random variables

are often dependent. For example, in reliability engineering, in a two engine aircraft, the lifetimes of

the two engines can not be assumed to be independent since if one of the two engines fails, it affects

the working of the other engine. Similarly in a desk top computer with both a central processing unit

(CPU) and a co-processor, the components are dependent, as sudden power surge could effect both the
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components simultaneously (Nelson, 1999, p. 46). One of the most famous exponential models, Marshall-

Olkin model (cf. Barlow and Proschan, 1981), describes this situation perfectly. One quick way to check

the dependence of order statistics is though Kendall’s tau τ . According to (4.1), for order statistics from

independent and identical random variables, it holds that

τ(X1:n, Xn:n) =
1

2n− 1
.

However, for order statistics from dependent random variables, the Kendall’s tau depends on the structure

of the random variables. There is little work on the dependence of order statistics from dependent

samples. Boland, et al (1996) initiated some work in their paper. Recently, Navarro and Balakrishnan

(2010) derived some expressions for Pearson’s correlation coefficient between two order statistics. They

also mentioned to use a Monte Carlo procedure for Kendall’s tau in the case of exchangeable dependent

components.

In this section, we study the dependence properties of order statistics from Marshall-Olkin bivariate

and Pareto bivariate models. It is shown that order statistics from those two models have more dependence

than those from independent cases according to more SI order.

5.2.1 Bivariate Marshall-Olkin model

An exchangeable random vector (X1, X2) is said to follow Marshall-Olkin bivariate exponential distribu-

tion with parameters (λ, λ12), if the survival function can be expressed as

P (X1 > x,X2 > y) = exp {−λx− λy − λ12 max{x, y}} , λ > 0, λ12 > 0.

It is seen that

P (X1 > x,X2 > y) ≥ P (X1 > x)P (X2 > y),

which indicates that (X1, X2) have positive dependence. This property is actually called positively

quadrant dependence (see Chapter 9 of Shaked and Shanthikumar, 2007).

A natural question would be see how the parameters affect the dependence between order statistics.

The following result gives some insight into this problem.

Theorem 5.6 Assume that exchangeable random vector (X1, X2) follows a bivariate Marshall-Olkin

model with parameters (λ, λ12), and exchangeable random vector (Y1, Y2) follows a bivariate Marshall-

Olkin model with parameters (λ∗, λ∗12). Then

λ∗12
λ∗
≤ λ12

λ
=⇒ (X∗2:2|X∗1:2) ≺SI (X2:2|X1:2).

Proof: a) From Theorem 1.4 in Barlow and Proschan (1981, p. 131), we have

H2[s](x) = P (X2:2 ≤ x|X1:2 = s)

= P (X2:2 −X1:2 ≤ x− s|X1:2 = s)

= P (X2:2 −X1:2 ≤ x− s)

= 1− 2λ exp{−(λ+ λ12)(x− s)}
γ

,

where γ = 2λ+ λ12. Since

P (X1:2 > x) = e−γx,

8



the pth quantile of X1:2 can be written as

ξp = − 1

γ
log(1− p), 0 < p < 1.

Hence, for 0 < p ≤ q < 1, it holds that

H2[ξq ] ◦H
−1
2[ξp]

(u) = 1− (1− u)×
(

1− p
1− q

)λ+λ12
γ

, (5.3)

from which, the required result follows.

The other interesting question is that if we ignore the dependence between (X1, X2), how would this

affect the dependence of (X2:2 on X1:2)? Observing that SI order only depends on the copula structure,

without loss of generality, setting λ∗12 = 0 in Eq. (5.3), we immediately have the following result.

Corollary 5.7 Assume that exchangeable random vector (X1, X2) follows a bivariate Marshall-Olkin

model, and X∗1 and X∗2 are independent and identical random variables with arbitrary continuous distri-

butions. Then

(X∗2:2|X∗1:2) ≺SI (X2:2|X1:2).

Remark 5.2: From Eq. (5.3), it is easy to see that the relative dependence of (X2:2, X1:2) is increasing

in λ12, but decreasing in λ. Corollary 5.7 also gives a lower bound for τ(X2:2, X1:2) according to (4.1),

τ(X2:2, X1:2) ≥ τ(X∗1:2, X
∗
2:2) =

1

3
.

Remark 5.3: Let us compute Kendall’s tau of (X1:2, X2:2) to further understand the implications of the

above result. First, note that,

P (X1:2 > x,X2:2 < y)

=

∫ y

x

∫ v

x

f1:2,2:2(u, v)dudv

=

∫ y

x

∫ v

x

h2,1(v − u)f1:2(u)dudv

= 2λ(λ+ λ12)

∫ y

x

∫ v

x

e−(λ+λ12)(v−u)e−γududv

= 2λ(λ+ λ12)

∫ y

x

e−(λ+λ12)v

∫ v

x

e−λududv

= 2(λ+ λ12)

∫ y

x

e−(λ+λ12)v
(
e−λx − e−λv

)
dv

= 2e−λx
[
e−(λ+λ12)x − e−(λ+λ12)y

]
− 2(λ+ λ12)

γ

(
e−γx − e−γy

)
.

Now, assume that (Y1:2, Y2:2) also follows a bivariate Marshall-Olkin model, then

τ(X1:2, X2:2) = 1− 4p,

where,

p = P (X1:2 > Y1:2, X2:2 < Y2:2).
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Hence,

P (X1:2 > Y1:2, X2:2 < Y2:2)

=

∫ ∞
0

∫ y

0

P (X1:2 > x,X2:2 < y)f1:2,2:2(x, y)dxdy

= 2λ(λ+ λ12)

∫ ∞
0

∫ y

0

P (X1:2 > x,X2:2 < y)e−(λ+λ12)ye−λxdxdy.

After some calculation, the above equality reduces to,

P (X1:2 > Y1:2, X2:2 < Y2:2) =
λ(λ2 + 4λ2 − 2γλ− λ212)

2γ2(γ + λ+ λ12)
.

Thus,

τ(X1:2, X2:2) = 1− 2λ(λ2 + 4λ2 − 2γλ− λ212)

γ2(γ + λ+ λ12)
.

In Table 1, we present some numerical evidences. It is seen that τ(X1:2, X2:2) is increasing in λ12,

decreasing in λ, which agrees with Eq. (5.3).

τ(X1:2, X2:2)

λ � λ12 0.5 1 1.5 2 2.5

0.5 0.733 0.859 0.911 0.939 0.956

1 0.6 0.733 0.809 0.857 0.889

1.5 0.532 0.654 0.733 0.788 0.828

2 0.492 0.6 0.677 0.733 0.766

2.5 0.465 0.561 0.634 0.690 0.733

Table 1: Kendall’s tau of (X1:2, X2:2).

5.2.2 Bivariate Pareto distribution

Assume that (X1, X2) is an exchangeable random vector with joint Pareto survival function

F̄ (x, y) = P (X1 > x,X2 > y) = (1 + ax+ ay)−c,

where x, y ≥ 0 and a > 0 and c > 0 are called scale parameter and shape parameter, respectively. It

should be noted that (X1, X2) is also positively quadrant dependent.

The following result reveals that the dependence of (X2:2, X1:2) only relies on the shape parameter c.

Theorem 5.8 Assume that (X1, X2) is an exchangeable Pareto random vector with shape parameter c,

and (X∗1 , X
∗
2 ) be other exchangeable Pareto random vector with shape parameter c∗. Then

c∗ ≤ c =⇒ (X∗2:2|X∗1:2) ≺SI (X2:2|X1:2).

Proof: Note that the conditional density function of X2:2 given X1:2 is

f(y|x) =
a(1 + c)(1 + 2ax)c+1

(1 + ax+ ay)c+2
.
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Hence,

H2[s] = P (X2:2 ≤ x|X1:2 = s)

=

∫ x

s

f(u|s)du

= (1 + 2as)c+1
[
(1 + 2as)−c−1 − (1 + as+ ax)−c−1

]
= 1− (1 + 2as)c+1(1 + as+ ax)−c−1.

Since

P (X1:2 ≤ x) = 1− (1 + 2ax)−c,

it holds that

H2[ξp](x) = P (X2:2 ≤ x|X1:2 = F−11:2 (p))

= 1− (1− p)−1−1/c
[

1 + (1− p)−1/c

2
+ ax

]−c−1
.

Hence, we have for 0 < p ≤ q < 1,

H2[ξq ] ◦H
−1
2[ξp]

(u) = 1− (1− q)−1−1/c
[

(1− q)− 1
c − (1− p)− 1

c

2
+ (1− u)

−1
c+1 (1− p)− 1

c

]−(c+1)

,(5.4)

which can be verified to be increasing in c > 0.

So, the required result follows.

The following result discusses order statistics from bivariate Pareto distributions.

Theorem 5.9 Assume that (X1, X2) is an exchangeable Pareto random vector with shape parameter c,

and X∗1 and X∗2 be independent and identically distributed random variables with arbitrary distributions.

Then

(X∗2:2|X∗1:2) ≺SI (X2:2|X1:2).

Proof: Note that, for 0 < p ≤ q < 1,

H∗1[ξ∗q ] ◦H
∗−1
1[ξ∗p ]

(u) = 1− (1− u)×
(

1− p
1− q

)1/2

.

Now, from Eq. (5.4), we have

H2[ξq ] ◦H
−1
2[ξp]

(u) ≤ 1− (1− u)×
(

1− p
1− q

)1+1/c

≤ 1− (1− u)×
(

1− p
1− q

)1/2

= H∗2[ξ∗q ] ◦H
∗−1
2[ξ∗p ]

(u).

6 Concluding Remarks

It will be of interest to know whether Theorem 5.5 can be extended to other order statistics, that is, for

2 ≤ j ≤ n− 1,

(Xj:n|X1:n) �SI (Yj:n|Y1:n).

11



It is also true for j = 2. The proof follows on the same lines by noting that

X2:n −X1:n ≤DISP Y2:n − Y1:n

as proved in Kochar and Korwar (2005) under the given conditions on the parameters of the exponential

distributions. To prove our conjecture one needs to prove that

Xj:n −X1:n ≤DISP Yj:n − Y1:n

whose proof is still elusive for 3 ≤ j ≤ n− 1.

It is also worth noting that Dolati, et al. (2008) got a nice bound for Kendall’s tau of (Xn:n, X1:n)

by using Theorem 5.4,

τ(Xn:n, X1:n) ≤ 1

2n− 1
.

Khaledi and Kochar (2005) has extended this work to Generalized Order Statistics (which con-

tain order statistics and record values as special cases besides many other models of ordered random

variables). It will also be of interest to extend the bivariate exchangeable cases in Section 5 to the general

exchangeable cases.

Appendix

The proof of Theorem 5.1 depends heavily on the notion of dispersive ordering between two random

variables X and Y , and properties thereof. For completeness, the definition of this concept is recalled

below.

Definition 1 A random variable X with distribution function F is said to be less dispersed than another

variable Y with distribution G, written as X ≺DISP Y or F ≺DISP G, if and only if

F−1(β)− F−1(α) ≤ G−1(β)−G−1(α)

for all 0 < α ≤ β < 1. Equivalently, one must have F{F−1(u)− c} ≤ G{G−1(u)− c} for every c ≥ 0 and

u ∈ (0, 1).

For general information about the dispersive ordering and its properties, refer to Section 3.B of Shaked

and Shanthikumar (2007). A related earlier paper on this topic is by Deshpandé and Kochar (1983).

The proof of Theorem 5.1 will also makes use of the following result concerning the dispersive ordering

between generalized spacings associated with two random samples of possibly different sample sizes from

an exponential distribution.

Lemma 2 (Avérous, et al. 2005) Let X1:n ≤ · · · ≤ Xn:n be the order statistics associated with a random

sample of size n from an exponential distribution, and for 0 ≤ i < j ≤ n, let

D
(n)
ij = Xj:n −Xi:n

stand for the (i, j)th generalized spacing, with X0:n ≡ 0. Then for j − i ≤ j′− i′ and n′− j′ ≤ n− j, one

has

D
(n)
ij ≺DISP D

(n′)
i′j′ ,

and

i′ ≤ i and n− i ≤ n′ − i′ =⇒ Xi′:n′ ≺DISP Xi:n, (.1)

12



There is an intimate connections between the concepts of dispersive ordering and more SI ordering as

shown in the next Lemma.

Lemma 3 (Khaledi and Kochar, 2005) Let Xi and Yi be independent random variables with distribution

functions Fi and Gi, respectively for i = 1, 2. Then

X2 ≺DISP X1 and Y1 ≺DISP Y2 ⇒

(X2 + Y2)|X2 ≺SI (X1 + Y1)|X1

Finally, the following lemma formalizes the observation that the copula associated with a pair of order

statistics does not depend on the parent distribution.

Lemma 4 (Avérous, et al. 2005) Let X1:n ≤ · · · ≤ Xn:n be the order statistics associated with a

random sample of size n from a continuous distribution F . The pairs (Xi:n, Xj:n) and (Ui:n, Uj:n) =

(F (Xi:n), F (Xj:n)) then share the same copula, whatever the choices of 1 ≤ i < j ≤ n.

Proof of Theorem 5.1

In view of Lemma 4, it may be assumed without loss of generality that the parent distribution of the

Xi’s is exponential. Now under this assumption, the consecutive spacings are mutually independent. We

can write

Xj:n = Xi:n +D
(n)
ij (.2)

and

Xj′:n′ = Xi′:n′ +D
(n′)
i′j′ , (.3)

Note that Xi:n and Di,j:n are independent as well as Xi′:n′ and D
(n′)
i′j′ are independent. It follows from

Lemma 2 that,

i′ ≤ i and n− i ≤ n′ − i′ =⇒ Xi′:n′ ≺DISP Xi:n, (.4)

and

D
(n)
ij ≺DISP D

(n′)
i′j′

by Lamma 3, it follows that

(Xj′:n′ |Xi′:n′) �SI (Xj:n|Xi:n),

thus proving Theorem 5.1.
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