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Response to the referee’s report on
JMVA manuscript no 06–249

The referee and Associate Editor recommended acceptance of this sub-
mission, subject to a minor revision. The reviewer simply asked for some
condensation and pointed out two typographical errors.

Condensation

The referee asked for some reduction in the size of the manuscript but did
not set a specific goal. His/her only suggestion was that the proof of the main
result could possibly be made shorter if it weren’t divided into subsections.

As the argument breaks up naturally into logical parts, we have a strong
preference for keeping the division in subsections; in our view, it makes the
exposition crisp and easy to follow. Very little space would actually be gained
by eliminating the titles of the subsections anyway.

In fact, Section 3 of the revision includes one more short subsection be-
cause after our original submission, we made a simple observation that led to
a significant extension of our main result. The additional argument is given
in a new §3.1, whose content does not affect the rest of the proof.

In order to avoid making the paper any longer, we reduced the length
of the introduction. The new version is thus exactly the same length as the
original submission, but the main result is now much more valuable, because
the restrictive condition on the proportional hazards has been eliminated.

We hope you agree with our course of action.

Typographical errors

1. At the request of the referee, the condition (r1 + · · ·+rn)/n = r was re-
placed by (λ1+· · ·+λn)/n = 1 wherever appropriate in the manuscript.

2. The referee also asked to change “Sathe (1988)” for “Sathe (1980)” on
p. 2, but upon verification, Sathe’s paper was published in 1988. The
reference to his paper is now consistent throughout the manuscript.

Furthermore, the text was thoroughly checked and a few additional typos
were corrected.

We are grateful to the Associate Editor and referee(s) for their rapid and
thoughtful treatment of our submission.
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1 Introduction

Let X1, . . . , Xn be a random sample of n ≥ 2 mutually independent lifetimes
with survival function F̄ = 1−F , and let X(1) < · · · < X(n) be the associated
order statistics. As is well known, X(n+1−k) then characterizes the stochastic
behavior of the so-called “k-out-of-n” system, which is designed to work so
long as k ∈ {1, . . . , n} of its components are operational.

In practice, of course, systems are often made up of components whose life-
times Y1, . . . , Yn are mutually independent but whose survival functions F̄1, . . .,
F̄n are different. It is thus of general interest to study the impact of hetero-
geneity on the characteristics of a stochastic system.

This note focuses on the relative degree of dependence between the pairs
(X(1), X(n)) and (Y(1), Y(n)) of extreme order statistics respectively associated
with sets of homogeneous and heterogeneous sets of survival times. This work
was motivated in part by a result of Sathe (1988), who showed that

corr(Y(1), Y(n)) ≤ corr(X(1), X(n))

when X1, . . . , Xn form a random sample from the exponential distribution with
hazard rate λ > 0 while Y1, . . . , Yn are mutually independent exponentials with
distinct hazard rates λ1, . . . , λn > 0 such that (λ1 + · · ·+ λn)/n = λ.

Although this observation is interesting, it merely compares the relative degree
of linear association within the two pairs. It is now widely recognized, however,
that margin-free measures of association are more appropriate than Pearson’s
correlation, because they are based on the unique underlying copula which
governs the dependence between the components of a continuous random pair.
For a discussion, see, e.g., Embrechts et al. (2002) and references therein.

Specifically, what is showed here is that the pair (X(1), X(n)) is more dependent
than the pair (Y(1), Y(n)), according to the right-tail increasing ordering of
Avérous and Dortet-Bernadet (2000). This implies in particular that

κ(Y(1), Y(n)) ≤ κ(X(1), X(n)),

where κ(S, T ) represents any concordance measure between random variables
S and T in the sense of Scarsini (1984), e.g., Spearman’s rho or Kendall’s tau.

This result is established under the assumption that X1, . . . , Xn are absolutely
continuous with common density F ′ = f and hazard rate r = f/F̄ while
Y1, . . . , Yn have proportional hazard rates. In other words, it is assumed that
there exist a hazard rate r? and constants λ1, . . . , λn ∈ (0,∞) such that for
each k ∈ {1, . . . , n}, Yk has hazard rate rk = λkr

?.
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Section 2 recalls the notions required to state the result formally. The proof is
then given in Section 3. A few concluding remarks are made in the Discussion.

2 Preliminaries

For i = 1, 2, let (Si, Ti) be a pair of continuous random variables with joint
cumulative function Hi and margins Fi, Gi. Let also

Ci(u, v) = Hi{F−1
i (u), G−1

i (v)}, u, v ∈ (0, 1)

be the unique copula associated with Hi. In other words, Ci is the distribution
of the pair (Ui, Vi) ≡ (Fi(Si), Gi(Ti)) whose margins are uniform on the interval
(0, 1). See, e.g., Chapter 1 of Nelsen (1999) for details.

By analogy with the univariate notion of stochastic dominance, copula C1 is
said to be less dependent than copula C2 in the positive quadrant dependence
ordering (PQD), denoted (S1, T1) ≺PQD (S2, T2), if and only if

C1(u, v) ≤ C2(u, v), u, v ∈ (0, 1).

This condition implies that κ(S1, T1) ≤ κ(S2, T2) for all concordance measures
meeting the axioms of Scarsini (1984); see, e.g., Tchen (1980).

A stronger dependence ordering called right-tail increasingness (RTI) is de-
fined below in terms of the conditional distributions

CR
i,u(v) =

v − Ci(u, v)

1− u
= P(Vi ≤ v|Ui > u)

and their (right continuous) inverses (CR
i,u)

−1, i = 1, 2.

Definition 1 T1 is said to be less right-tail increasing in S1 than T2 is in S2,
denoted (T1|S1) ≺RTI (T2|S2), if and only if

CR
2,u2

◦ (CR
2,u1

)−1(w) ≤ CR
1,u2

◦ (CR
1,u1

)−1(w)

for all 0 < u1 < u2 < 1 and w ∈ (0, 1).

This notion is a restriction to copulas of the ordering proposed by Avérous
and Dortet-Bernadet (2000). (Note that contradictory results may occur when
their concept is used to compare random pairs other than through their asso-
ciated copulas.) The present definition is also distinct from the RTI ordering
of Hollander et al. (1990), which is not a dependence ordering in the usual
sense of Kimeldorf and Sampson (1989).

3



The RTI ordering is stronger than PQD in the sense that

(T1|S1) ≺RTI (T2|S2) ⇒ (S1, T1) ≺PQD (S2, T2).

The classical dispersive ordering between univariate distributions, whose def-
inition is recalled below, also plays a role in the sequel. See, e.g., Chapter 3B
of Shaked and Shanthikumar (2007) for further information in this regard.

Definition 2 A random variable X with distribution function F is said to be
less dispersed than another variable Y with distribution G, written X ≺DISP Y ,
if and only if

F−1(β)− F−1(α) ≤ G−1(β)−G−1(α)

for all 0 < α ≤ β < 1, where F−1 and G−1 denote the right-continuous
inverses of F and G, respectively. Equivalently, one must have F{F−1(w) +
c} ≥ G{G−1(w) + c} for every c > 0 and w ∈ (0, 1).

3 Main result

This section gives a proof of the following result.

Proposition 1 Let X1, . . . , Xn and Y1, . . . , Yn be two sets of mutually inde-
pendent lifetimes. Assume that for k ∈ {1, . . . , n}, Xk has hazard rate r and
Yk has hazard rate rk = λkr

?, where λ1, . . . , λn > 0. The dependence in the
pair (X(1), X(n)) of extreme order statistics from the homogeneous set is then
larger than the dependence in the pair (Y(1), Y(n)) of extreme order statistics
from the heterogeneous set, in the sense that

(Y(n)|Y(1)) ≺RTI (X(n)|X(1)) and (Y(1), Y(n)) ≺PQD (X(1), X(n)).

The argument leading to Proposition 1 can be decomposed in five easy steps,
as detailed below.

3.1 Reduction to the case r? = r and λ̄ = 1

There is clearly no loss of generality in assuming that λ̄ = (λ1+· · ·+λn)/n = 1.
For, one can always express the hazard rate of Yk in the alternative form rk =
λ̃kr̃ with r̃ = λ̄ r? and renormalized proportionality constant as λ̃k = λk/λ̄.

It is also sufficient to establish Proposition 1 in the case r? = r. Indeed, if
X?

(1) < · · · < X?
(n) are the order statistics associated with a random sample
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X?
1 , . . . , X

?
n from a distribution with hazard rate r?, one has both

(X(n)|X(1)) ≺RTI (X?
(n)|X?

(1)) and (X?
(n)|X?

(1)) ≺RTI (X(n)|X(1)).

This comes from the fact that the copula associated with any pair of order
statistics from a random sample does not depend on the parent distribution;
see, e.g., Lemma 6 of Avérous et al. (2005).

3.2 Further reduction to the exponential case

Let the cumulative hazard rate associated with r be denoted by

R(t) =
∫ t

0
r(z)dz = − log{F̄ (t)}, t > 0

and for each k ∈ {1, . . . , n}, consider the transformation

Xk 7→ X∗
k = R(Xk), Yk 7→ Y ∗

k = R(Yk).

Let also X∗
(1) < · · · < X∗

(n) and Y ∗
(1) < · · · < Y ∗

(n) be the order statistics
corresponding to the new sets of variables.

In view of their invariance by monotone increasing transformations of the
margins, the copulas associated with the pairs (X(1), X(n)) and (X∗

(1), X
∗
(n))

coincide. Similarly, the pairs (Y(1), Y(n)) and (Y ∗
(1), Y

∗
(n)) have the same copula.

Furthermore, the RTI dependence ordering is copula-based. Accordingly,

(Y(n)|Y(1)) ≺RTI (X(n)|X(1)) ⇔ (Y ∗
(n)|Y ∗

(1)) ≺RTI (X∗
(n)|X∗

(1))

and hence one need only show the right-hand side to prove Proposition 3.

This is a convenient simplification which amounts to assuming a constant
hazard rate or, equivalently, that all the variables involved are exponential.
Indeed, given that R−1(t) = F̄−1(e−t), it is immediate that X∗

k is exponential
with unit mean for each k ∈ {1, . . . , n}. Furthermore, the proportional hazards
assumption on Yk is equivalent to the statement that

F̄k(t) = {F̄ (t)}λk , t > 0. (1)

Accordingly, Y ∗
k = R(Yk) is exponential with mean 1/λk for each k ∈ {1, . . . , n}.
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3.3 Translation into the LTD ordering

Left-tail decreasingness (LTD) is another dependence ordering due to Avérous
and Dortet-Bernadet (2000). Following Colangelo et al. (2006), the most eco-
nomical way of defining it is through the equivalence

(T1|S1) ≺RTI (T2|S2) ⇔ (−T1| − S1) ≺LTD (−T2| − S2). (2)

A more explicit definition is given below, in terms of the conditional copulas

CL
i,u(v) =

1

u
Ci(u, v) = P(Vi ≤ v|Ui ≤ u)

and their (right continuous) inverses (CL
i,u)

−1, i = 1, 2.

Definition 3 T1 is said to be less left-tail decreasing in S1 than T2 is in S2,
denoted (T1|S1) ≺LTD (T2|S2), if and only if

CL
2,u2

◦ (CL
2,u1

)−1(w) ≤ CL
1,u2

◦ (CL
1,u1

)−1(w)

for all 0 < u1 < u2 < 1 and w ∈ (0, 1).

Using Definition 3 and the general fact that the copula D of (−S,−T ) is
connected to the copula C of (−S, T ) through the relation D(u, v) = u −
C(u, 1− v) for all u, v ∈ (0, 1), one can check easily that

(−T1| − S1) ≺LTD (−T2| − S2) ⇔ (T2| − S2) ≺LTD (T1| − S1). (3)

In the light of relations (2) and (3), therefore, Proposition 1 is true so long as

(X∗
(n)| −X∗

(1)) ≺LTD (Y ∗
(n)| − Y ∗

(1)).

3.4 Determination of the copulas of (−X∗
(1), X

∗
(n)) and (−Y ∗

(1), Y
∗
(n))

It is sufficient to find the copula Cλ of the pair (−Y ∗
(1), Y

∗
(n)), because the pair

(−X∗
(1), X

∗
(n)) corresponds to the special case where the components of the

vector λ = (λ1, . . . , λn) are all equal to one.

Remembering that λ1 + · · · + λn = n by hypothesis, one can see that for
arbitrary s < 0 and t > 0,

K(s) = ens and Lλ(t) =
n∏

k=1

(
1− e−λkt

)
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are the marginal distribution functions of −Y ∗
(1) and Y ∗

(n), respectively. When-
ever s + t ≥ 0, one finds more generally that

P(−Y ∗
(1) ≤ s, Y ∗

(n) ≤ t) = P(−s < Y ∗
1 ≤ t, . . . ,−s < Y ∗

n ≤ t)

=
n∏

k=1

(
eλks − e−λkt

)
= K(s)Lλ(s + t). (4)

The copula Cλ of the pair (−Y ∗
(1), Y

∗
(n)) may then be found by substituting

s = K−1(u) = log(u)/n, t = L−1
λ (v)

into equation (4). This yields

Cλ(u, v) =





uLλ{L−1
λ (v) + log(u)/n} if u ∈ Aλ(v),

0 otherwise,

where by definition, Aλ(v) = {u ∈ (0, 1) : L−1
λ (v) + log(u)/n ≥ 0}.

Although the expression for C is not algebraically closed in general, it turns
out to be sufficiently explicit to establish Proposition 1. Note however that in
the special case where λ1 = · · · = λn = 1, one gets

L1(t) = (1− e−t)n, L−1
1 (v) = − log(1− v1/n)

and hence

C1(u, v) = max{0, (u1/n + v1/n − 1)n}, u, v ∈ (0, 1).

This copula turns out to be a member of Clayton’s family, also known as the
gamma frailty model in survival analysis; see, e.g., Oakes (1989). As already
noted by Schmitz (2004), this copula characterizes the dependence between the
extreme order statistics of a random sample of size n ≥ 2 from any univariate
continuous distribution.

3.5 Comparison of Cλ and C1 via the LTD ordering

In order to prove Proposition 1, it remains to show that for arbitrary 0 < u1 <
u2 < 1 and w ∈ (0, 1),

CL
λ,u2

◦ (CL
λ,u1

)−1(w) ≤ CL
1,u2

◦ (CL
1,u1

)−1(w), (5)
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where for arbitrary λ and u ∈ (0, 1),

CL
λ,u(v) =





Lλ{L−1
λ (v) + log(u)/n} if u ∈ Aλ(v),

0 otherwise,

and for all w ∈ (0, 1), (CL
λ,u)

−1(w) = Lλ{L−1
λ (w)− log(u)/n}.

For fixed w ∈ (0, 1), let vλ = (CL
λ,u1

)−1(w) and observe that because u1 < u2,

L−1
λ (vλ) + log(u2)/n = L−1

λ (w) + log(u2/u1)/n > 0,

i.e., u2 ∈ Aλ(vλ). Likewise, u2 ∈ A1(v1) with v1 = (CL
1,u1

)−1(w).

Consequently, an equivalent expression for inequality (5) is given by

Lλ{L−1
λ (w) + log(u2/u1)/n} ≤ L1{L−1

1 (w) + log(u2/u1)/n}.

Writing c = log(u2/u1)/n > 0 and allowing u1 ∈ (0, 1) and u2 ∈ (u1, 1) to
vary freely in their domain, one can see that Proposition 1 holds if and only if

Lλ{L−1
λ (w) + c} ≤ L1{L−1

1 (w) + c} (6)

for every w ∈ (0, 1) and c > 0, where L1 and Lλ are the distribution functions
of X∗

(n) and Y ∗
(n) respectively. In view of Definition 2, however, condition (6)

amounts to the statement that

X∗
(n) ≺DISP Y ∗

(n),

and this fact is already known from the work of Dykstra et al. (1997). Thus
the proof is completes. 2

4 Discussion

A few applications of, and complements to, Proposition 1 are briefly described
below. For clarity, each topic is the object of a short subsection.

4.1 A lower bound on κ(Y(1), Y(n))

It was mentioned in the Introduction that under the conditions of Propo-
sition 1, the presence of heterogeneity in a set of observations from a pro-
portional hazards model tends to decrease the degree of association between
extreme order statistics as measured, e.g., by Spearman’s rho or Kendall’s tau.
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In the light of the work of Schmitz (2004) and Avérous et al. (2005), it is
also known that κ(X(1), X(n)) ≥ 0 for any concordance measure and any ho-
mogeneous sample of observations. One may wonder, therefore, whether the
introduction of heterogeneity as per the terms of Proposition 1 reduces this
dependence sufficiently to make it negative.

In fact, κ(Y(1), Y(n)) ≥ 0 also, as follows immediately from Theorem 3.4 of
Boland et al. (1996). The latter states that (Y(n)|Y(1)) is in right-tail increasing
dependence, i.e., that it is more right-tail increasing than any pair (S, T ) of
independent continuous random variables. Alternatively, it is easy to see from
the above developments that (Y(n)| − Y(1)) is in negative dependence in the
left-tail decreasing ordering. To this end, one must only show that

w ≤ CL
λ,u2

◦ (CL
λ,u1

)−1(w)

for all 0 < u1 < u2 < 1 and w ∈ (0, 1). But by the same arguments as before,
the inequality reduces to

w ≤ Lλ{L−1
λ (w) + log(u2/u1)/n},

which is immediate from the fact that u1 < u2. This is consistent with the
result of Sathe (1988), who showed that corr(Y(1), Y(n)) ≥ 0 in the special case
of exponentials.

4.2 An upper bound on κ(Y(1), Y(n))

Coming back to the introductory remarks that motivated this work, consider
a set of mutually independent components whose lifetimes Y1, . . . , Yn follow a
proportional hazards model of the form (1). To be explicit, assume that there
exist a baseline survivor function F̄ and scalars λ1, . . . , λn > 0 such that

P(Yk > t) = {F̄ (t)}λk , t > 0.

It may then be of interest to qualify the degree of association between the
order statistics Y(1) and Y(n) which account for the reliability of the n-out-of-n
(series) and 1-out-of-n (parallel) systems.

For concordance measures in the sense of Scarsini (1984), κ(Y(1), Y(n)) does
not depend on the baseline survivorship, and so the calculation would be
simplified by assuming that F̄ (t) = e−t, which implies that Y1, . . . , Yn are then
exponential. Nevertheless, the calculation would remain exceedingly complex,
in view of the heterogeneity.

Under the conditions of Proposition 1, an upper bound on κ(Y(1), Y(n)) is given
by κ(X(1), X(n)), where X(1) and X(n) determine the reliability of the series and
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parallel systems in the homogeneous case. For Kendall’s tau, in particular, one
would get

τ(Y(1), Y(n)) ≤ 1

2n− 1
,

as per Theorem 5 of Schmitz (2004). Theorem 6 in the same paper could be
used to give an upper bound on Spearman’s correlation between Y(1) and Y(n).

4.3 Possible extensions

There are several ways in which Proposition 1 could be extended. An obvious
option would be to investigate whether statements of the form

(Y(j)|Y(k)) ≺RTI (X(j)|X(k)) or (Y(j)|Y(k)) ≺PQD (X(j)|X(k))

could be established for other choices of j, k ∈ {1, . . . , n} with j > k. This
problem seems difficult, however, given the intricate form of the dependence
structure between order statistics from a heterogeneous set of observations.

An apparently simpler, yet unsolved, problem would consist of showing that

(Y(n)|Y(1)) ≺MRD (X(n)|X(1)) (7)

using the monotone regression dependence (MRD) ordering. This concept,
whose origin can be traced back to Yanagimoto and Okamoto (1969), is also
known in the literature as the stochastically increasing (SI) ordering. Follow-
ing Capéraà and Genest (1990), its definition is given below in terms of the
conditional copulas

Ci,u(v) =
∂

∂u
Ci(u, v) = P(Vi ≤ v|Ui = u)

and their (right continuous) inverses (Ci,u)
−1, i = 1, 2. For an equivalent al-

ternative definition in terms of quantile functions, see Avérous et al. (2005).

Definition 4 T1 is said to be less monotone regression dependent in S1 than
T2 is in S2, denoted (T1|S1) ≺MRD (T2|S2), if and only if

C2,u2 ◦ (C2,u1)
−1(w) ≤ C1,u2 ◦ (C1,u1)

−1(w)

for all 0 < u1 < u2 < 1 and w ∈ (0, 1).

If it turned out to be true, a statement such as (7) would represent a strength-
ening of Proposition 1, because of the following chain of implications estab-
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lished by Avérous and Dortet-Bernadet (2000):

(T1|S1) ≺MRD (T2|S2) ⇒ (T1|S1) ≺LTD (T2|S2)

(T1|S1) ≺RTI (T2|S2)
⇒ (S1, T1) ≺PQD (S2, T2).

In view of the copula-based definition of ≺MRD, a proof of conjecture (7) could
be limited to the exponential case. Although it remains elusive, the following
connection seems well worth pointing out.

Proposition 2 Let X∗
1 , . . . , X

∗
n and Y ∗

1 , . . . , Y ∗
n be two sets of mutually in-

dependent exponential random variables. Assume that for k ∈ {1, . . . , n},
E(X∗

k) = 1 and E(Y ∗
k ) = 1/λk > 0. If (λ1 + · · ·+ λn)/n = 1, then

(Y ∗
(n)|Y ∗

(1)) ≺MRD (X∗
(n)|X∗

(1)) ⇔ (X∗
(n)| −X∗

(1)) ≺MRD (Y ∗
(n)| − Y ∗

(1))

⇔ X∗
(n) −X∗

(1) ≺DISP Y ∗
(n) − Y ∗

(1).

Proof. The first equivalence is a general property of the ≺MRD ordering which
is easily verified from its definition. To establish the second equivalence, use
(4) to express the copula of (−Y ∗

(1), Y
∗
(n)) in the alternative form

Cλ(u, v) =





n∏

k=1

(
eλk log(u)/n − e−λkL−1

λ
(v)

)
if u ∈ Aλ(v),

0 otherwise.

Upon differentiation and elementary algebra, it follows that

Cλ,u(v) =
∂

∂u
Cλ(u, v) = Mλ{L−1

λ (v) + log(u)/n}, u ∈ Aλ(v)

where, as per David (1981, p. 26),

Mλ(t) = P(Y ∗
(n) − Y ∗

(1) ≤ t) =

(
1

n

n∑

k=1

λk

1− e−λkt

)
×

n∏

k=1

(1− e−λkt).

Using the fact that (Cλ,u)
−1(w) = Lλ{M−1

λ (w)− log(u)/n} for all w ∈ (0, 1),
one deduces that (X∗

(n)| −X∗
(1)) ≺MRD (Y ∗

(n)| − Y ∗
(1)) holds true if and only if

Mλ{M−1
λ (w) + log(u2/u1)/n} ≤ M1{M−1

1 (w) + log(u2/u1)/n}
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for all 0 < u1 < u2 < 1 and w ∈ (0, 1). Letting c = log(u2/u1)/n > 0, one then
sees at once that the latter statement is equivalent to the fact that X∗

(n)−X∗
(1)

is less dispersed than Y ∗
(n) − Y ∗

(1) in the sense of Definition 2. 2

An immediate consequence of this result is that the conjecture (7) is at least
true in the case n = 2. For, Theorem 3.7 of Kochar and Korwar (1996) states
that under the same set of conditions as Proposition 2, the normalized spacings
are ordered by ≺DISP, viz.

(n− k + 1)(X∗
(k) −X∗

(k−1)) ≺DISP (n− k + 1)(Y ∗
(k) − Y ∗

(k−1)), k ∈ {2, . . . , n}.

When n = 2, this is precisely the desired result. Extensive numerical evidence
collected by the authors leads them to believe that the relation

X∗
(n) −X∗

(1) ≺DISP Y ∗
(n) − Y ∗

(1)

is valid for any integer n ≥ 3. Note that from Corollary 2.1 of Kochar and
Rojo (1996), the weaker relation

X∗
(n) −X∗

(1) ≺ST Y ∗
(n) − Y ∗

(1)

is already known to hold, i.e., Mλ(t) ≤ M1(t) for all t > 0.

In closing, it can be observed that because

Mλ{M−1
λ (w) + log(u2/u1)/n} ≥ w, w ∈ (0, 1)

for all choices of λ = (λ1, . . . , λn), both (X∗
(n)|X∗

(1)) and (Y ∗
(n)|Y ∗

(1)) are posi-
tive monotone regression dependent; in other words, their copula dominates
the independence copula in the ≺MRD ordering. In the homogeneous case,
this was already known from Proposition 2 of Avérous et al. (2005); in the
heterogeneous case, this reinforces the observation made in Subsection 4.1.
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