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Abstract

Human BRCA2 protects the DNA when replication forks stall, whereas MRE11-RAD50
and WRN-DNAZ2 process or partially degrade these substrates. When mutated, these genes
result in distinct genetic instabilities and cancers, arguing they have unique, not redundant,
functions.

Escherichia coli encodes functional homologs of MRE11-RAD50 (SbcC-SbcD), WRN-DNA2
(RecQ-Recl), and BRCA2 (RecF). Here, we use 2-dimensional gels, pulse-labelling, and
replication-profiling analysis to show the bacterial homologs act at distinct substrates and loci
on the chromosome. Whereas RecF and RecJ-RecQ protect and process DNA at arrested
replication forks to facilitate repair, RecBCD and SbcC-SbcD protect and process DNA at sites
where forks converge. Comparing the assays used in E. coli to human cells, we consider
whether these cellular roles may be functionally conserved.

Introduction

Accurate duplication of the genome requires that cells initiate, elongate, and then
complete replication to ensure that each daughter cell inherits an identical copy of the genetic
information. During this process, replication forks encounter a variety of hurdles that hinder
their progression through the genome. These include lesions such as abasic sites; small base
modifications due to depurination or oxidation like uracils, thymine glycols, or 8-oxo-guanines;
bulky DNA adducts due to UV or chemical exposure; interstrand DNA crosslinks; single- and
double-strand DNA breaks resulting from ionizing radiation; and physical barriers such as DNA
secondary structures or DNA-bound proteins or RNA (reviewed in [1]). These common
biological events impose structurally diverse challenges that can prevent the translocation of
replisomes through DNA in different ways. Restoring replication upon encountering these
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qualitatively distinct impediments is likely to require different subsets of repair enzymes and
utilize distinct pathways.

A central player in human cells for maintaining arrested replication forks is BRCA2, a
protein frequently mutated in hereditary breast and ovarian cancers, but also associated with
pancreatic, brain and other cancers [2—-4]. Following replication disruption, the protein
mediates loading of a RAD51 nucleoprotein filament on the single-stranded regions at the fork
[3, 5]. RAD51 acts by pairing single-strand DNA with homologous duplex DNA [6], an activity
required during meiosis for bringing together corresponding maternally and paternally
inherited chromosomes, but also during replication of mitotic cells for pairing sister chromatids
at replication forks when progression is impeded. At arrested replication forks, the pairing
serves to protect the nascent DNA from extensive exonucleolytic degradation, and is required
for replication to resume normally [3, 5, 7, 8].

Several additional enzymes have been identified that are present or recruited to stalled
or disrupted replication forks, contributing to the protection [9—12]. Among this class are some
that partially degrade or process the nascent DNA at stalled replication forks, and include the
WRN-DNA2 helicase-nuclease, and the MRE11-RAD50 structure-specific nuclease [3, 13, 14].

WRN and DNA2 encode a RECQ-family helicase and a 5’-exonuclease, respectively,
although both proteins individually possess cryptic helicase and nuclease activities [15-17].
WRN functions in concert with DNA2 to partially degrade the DNA at forks stalled or damaged
by hydroxyurea treatment through a mechanism that is stimulated by interactions with single-
strand binding protein, RPA [13, 16, 18]. The processing is required for the timely resumption
of DNA synthesis, making it likely the degradation represents a normal part of the recovery
process [13, 19, 20]. Mutations in WRN result in Werner’s syndrome, a rare genetic disorder
manifesting as premature aging or progeria [21]. Patients are predisposed to thyroid cancers,
melanoma, meningioma, soft tissue sarcomas, osteosarcomas, and colorectal cancer (reviewed
in [22]). DNA2 is essential for viability and is upregulated in a wide range of cancers containing
TP53 mutations which is associated with poorer outcomes [15, 23].

MRE11-RAD50 is a heterotetrameric complex with a cohesin-like architecture that is
also capable of processing and partially degrading DNA at hydroxyurea-stalled replication forks
[3, 13, 24]. The complex contains a prominent endonuclease activity that incises DNA hairpin-
like structures, as well as double-stranded 3'-5’ exonuclease activity [17, 25-28]. MRE11-
RAD50-mediated degradation is predominantly detected in the absence of BRCA2, making it
unclear if the processing is associated with the normal recovery process or represents an
aberrant condition [3, 29-31]. Irrespective, the protein complex has a critical cellular role.
Inactivation of this enzyme complex renders cells hypersensitive to double-strand breaks,
impairs cell cycle progression, and leads to large palindromic amplifications and widespread
genetic instabilities [32—37]. In humans, null mutants in MRE11 or RAD50 are embryonic lethal,
and hypomorphs are associated with the hereditary genetic disorders ataxia telangiectasia-like
disorder (ATLD), and Nijmegen breakage syndrome-like disorder (NBSLD) [33, 38—40]. Somatic
mutations can be associated with ovarian, breast, and glioma cancers, and affect prognosis and
survival rates (reviewed in [41]).

The mechanism by which replication is restored has also come into focus as a promising
target for cancer therapies, with synthetic lethal approaches clinically validated by the efficacy
of PARP inhibitors in treating BRCA2 cancers and WRN inhibitors in treating cancers with
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microsatellite instabilities (reviewed in [42, 43]). Both replication and repair are highly
conserved across evolutionarily divergent organisms. Our mechanistic understanding of BRCA2
and WRN began in Escherichia coli, where RecF and RecQ are considered functional homologs.
In the case where replication is disrupted by UV-induced damage, RecF, together with RecO and
-R, facilitate loading of a RecA filament at the replication fork, similar to BRCA2 loading RAD51
[44—-46]. This loading is required to protect and maintain the structural integrity of the arrested
fork DNA [47-50]. Additionally, RecJ together with RecQ, a 5’-3’ single-stranded exonuclease
and 3’-5’ helicase, partially degrade the nascent DNA at times before DNA synthesis resumes
through a mechanism stimulated by interactions with single-strand binding protein, similar to
WRN-DNA2 [49, 51-55]. In E. coli, the nascent degradation has been shown to preferentially
occur on the nascent lagging strand of the fork, which is thought to create a substrate for RecF,
-0, -R, and RecA to bind and stabilize, as well as restore the lesion-containing region to a
double-stranded form, which is essential for nucleotide excision repair to bind the lesion and
effect repair [48, 49, 51, 56]. Similar to WRN-DNAZ2, when either RecJ-RecQ processing or
excision repair cannot occur, DNA synthesis fails to recover normally [52]. Under these
conditions in E. coli, the recovery is delayed, and survival becomes dependent on translesion
synthesis by polymerase V [52].

E. coli also has clear structural and functional homologs of MRE11-RAD50, encoded by
sbcC and sbcD. The genes were originally identified as mutations which suppressed the poor
growth and DNA damage sensitivity of strains lacking both RecBCD and Exonuclease | [57, 58].
Subsequent characterizations demonstrated that the genes prevented large palindromes from
persisting in the bacterial DNA, an observation that mimics the genetic instabilities arising in the
absence of the eukaryotic homologs [35, 59]. Recent work in E. coli has shown that both SbcC-
SbcD and Exo | process DNA at loci where two replisomes converge [60—-62]. The processing is
required for chromosome replication to complete normally, and mutants lacking these genes
depend on an aberrant form of recombination to maintain viability that leads to genetic
instabilities at these loci [61].

However, whether the bacterial SbcC-SbcD functions at replication forks disrupted by
DNA damage has not been examined. Considering the intensive focus on replication processing
of DNA damage and Mrel11-Rad50 as a potential therapeutic target, this represents an
important gap in our state of knowledge to address. While both WRN-DNA2 and Mrel1-Rad50
are thought to process stalled replication forks, mutations in these genes lead to distinct
phenotypes with respect to the genetic instabilities, cancers, and genetic disorders that arise.
These observations would argue that their functions are likely to be distinct, rather than
redundant with respect to replication fork processing. Here, we show that the bacterial
homologs of these eukaryotic enzymes function at distinct and separate events on the E. coli
chromosome.

Materials and Methods

Strains and plasmids

All strains used in this work are derived from SR108, a thyA deoC derivative of W3110 [63].
HL944 (SR108 recQ1803::Tn3), HL924 (SR108 rec/284::Tn10), CL579 (SR108 recF6206::tet),
CL1056 (SR108 recBCD::cat), and CL628 (SR108 recF332::Tn3 recQ6215::cat) have been
described previously[49-51, 61].CL5475 (SR108 recJ::FRT-kan-FRT) and CL5478 (SR108
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recF6206::tet rec)::FRT-kan-FRT) were constructed by P1 transduction of the rec/::kan allele
from JW2860 [64] into SR108 and CL579, respectively, and selecting for kanamycin resistance.
CL5473 (SR108 sbcC::FRT-kan-FRT) and CL5476 (SR108 recF6206::tet sbcC::FRT-kan-FRT) were
made by P1 transduction of the sbcC::kan allele from JW0387 [64] into SR108 and CL579,
respectively, and selecting for kanamycin resistance. CL4276 (SR108 recBCD::cat sbcCD::gent)
was made by P1 transduction of recBCD::cat allele from CL1056 into CL2344 [61], selecting for
chloramphenicol resistance. CL5541 (SR108 rec/284::Tn10 recBCD::kan) was constructed by P1
transduction of recBCD::kan allele from KM21 [65] into HL924, selecting for kanamycin
resistance. pBR322 contains a ColE1 origin of replication [66].

UV survival

Fresh overnight cultures were diluted 1:100 in Davis media supplemented with 0.4%
glucose, 0.2% casamino acids, and 10 pg/ml thymine (DGCthy) and grown at 37°C to an optical
density of 0.4 at 600 nm (ODgg). At this time, 100-pl aliquots were removed from each culture
and serially diluted in 10-fold increments. Triplicate 10-pl aliquots of each dilution were spotted
onto Luria-Bertani agar plates supplemented with 10 ug/ml thymine (LBthy) before the plates
were UV irradiated at the indicated dose using a 15-watt germicidal lamp (254 nm, 1 J/m? per
sec at the sample position). Plates were incubated at 37°C overnight and viable colonies were
counted the next day to determine the surviving fraction.

Nascent DNA Degradation

Overnight cultures were diluted 1:100 and grown in DGCthy to an OD600 of 0.4 in a
37°C shaking water bath. Cultures were then pulse labeled with [3H]thymidine (1 uCi/10 pg/mL)
for 10 s, filtered on Whatman 0.4-um membrane filters, and washed twice with 3 mL of cold
NET buffer (100 mM NaCl/ 10 mM EDTA, pH 8.0/10 mM Tris, pH 8.0). The filter was then
resuspended in prewarmed nonradioactive DGCthy media, UV irradiated with 40 J/m?, and
incubated at 37°C. At the times indicated, duplicate 200-pL aliquots of cells in culture were
lysed, the DNA was precipitated by the addition of 5ml cold 5% trichloroacetic acid and filtered
onto Millipore glass fiber filters. The amount of 3H on each filter was determined by scintillation
counting. Duplicate samples were averaged for each experiment and the fraction of
radioactivity remaining was then determined by dividing the average of the time point by the
amount observed at time zero. Plots represent the average of at least three independent
experiments and error bars were plotted by determining 1 standard error.

2-D agarose gel analysis of plasmid replication intermediates

Overnight cultures of cells containing plasmid pBR322 were diluted 1:100 in DGCthy
medium containing 100 pg/ml ampicillin and grown in a 37°C shaking water bath to an OD600
of 0.5. At this time, 0.75-ml of cultures were mixed with equal volumes of ice-cold 2x NET (100
mM NaCl, 10 mM Tris, pH 8.0, 10 mM EDTA). The remaining cultures were UV irradiated at 50
J/m2, then returned to 37°C and at the indicated times post-UV irradiation, 0.75-ml aliquots
were mixed with equal volumes of ice-cold 2x NET. Cells were pelleted and frozen at -80°C.
Samples were resuspended in 140 pl of lysozyme (1 mg/ml) and RNaseA (0.2 mg/ml) in TE (10
mM Tris, pH 8.0, 1 mM EDTA) and lysed for 30 min at 37°C. Then Sarkosyl (10 ul of 20% [wt/wt])
and Proteinase K (10 pl of 10 mg/ml) was added and incubation continued for 60 min. Samples
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were then serially extracted with two volumes phenol-chloroform (1/1) and then again with
two volumes chloroform followed by dialysis for 1 h on 47 mm MF-Millipore 0.05-um pore disks
(Merck Millipore #/MWP04700) which were floated on a 250-mL beaker of TE (1 mM Tris, pH
8.0, 1 mM EDTA). The total genomic DNA was digested with Pvull (New England BioLabs) which
restricts the plasmid near its origin of replication. For the first dimension, samples were
extracted with one volume of chloroform before equal cell equivalents were electrophoresed in
a 0.4% agarose gel in 1x TBE at 1 V/ cm for 15 h. For the second dimension, the lanes were
excised, rotated 90°, and recast in a 1% agarose gel in 1x TBE and electrophoresed at 6.5 V/cm
for 6.5 h. For the Southern analysis, DNA in the gels was transferred to a Hybond N+ nylon
membrane, and the plasmid DNA was detected by probing with either 32P-labeled pBR322 or
pCLO1 plasmid DNA prepared by random-primer labeling (Agilent Technologies) using a32P-
labeled-dCTP (3000 Ci/mmol; PerkinElmer) and visualized using a STORM Phosphorimager with
its associated ImageQuant analysis software (Amersham Biosciences).

Replication profiles

Cultures grown overnight were diluted 1:250 in fresh LBthy media. All cultures were grown at
37°C with aeration. To normalize profiles, stationary-phase cultures were grown for 36 h before
harvesting. When cultures reached an OD600 of 0.4, genomic DNA was purified by placing 0.75-
mL of culture into 0.75-mL ice-cold 2X NET buffer (100 mM NaCl, 10 mM Tris at pH 8.0, 10 mM
EDTA). All samples were then pelleted by centrifugation, resuspended in a solution containing
140 pl of 1 mg/ml lysozyme and 0.2 mg/ml RNaseA in TE (10 mM Tris at pH 8.0, 1 mM EDTA),
and incubated at 37°C for 30 min to lyse cells. Subsequently, Sarkosyl [10 pl, 20% (wt/wt)] and
Proteinase K (10 ul, 10 mg/ml) were added, and the incubation was continued at 37°C for an
additional 30 min. The samples were then further purified by extracting the DNA with 4 vol
phenol/chloroform (1/1) followed by dialysis for 1 h using 47 mm MF-Millipore 0.05-um pore
disks (#VMWP04700; Merck Millipore) to float the samples on a 250-mL beaker of TE buffer (1
mM Tris at pH 8.0, 1 mM EDTA).

Genomic DNA samples were sequenced using single-end, 51-bp, bar-coded reads
prepared and run using seqWell library prep kits (seqWell) and Illumina Next Seq 2000
(Hlumina) following the manufacturer’s instructions. Gene mutations in each strain were
confirmed using the program Breseq to identify differences with the reference genome for
SR108 [67]. For all strains, the original lllumina sequence reads were aligned to the SR108
reference genome and assembled using the program Bowtie 1.0.0 (94). All aligned reads were
then characterized to determine the nucleotide frequency at each position. The number of
sequences per kilobase was determined and plotted using a custom Python script. To prevent
sequencing bias caused by the purification or sequencing, the copy number for each strain was
normalized to a stationary-phase culture of SR108. Plots represent these relative copy number
values at each genomic location in 1-kb bins and depict the replication profile of each strain.
The 30kb (30bin) floating average was determined at each point and plotted as a solid line.

Results
Similar to BRCA2, RecF, but not RecBCD, maintains the DNA at replication forks disrupted by UV-
induced DNA damage
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In E. coli, the ability to protect replication forks following disruption by UV-induced DNA
damage can be examined by following the fate of [3H]pulse-labeled nascent DNA made just
prior to UV-irradiation. To this end, [*H]thymidine was added to growing cultures for 10
seconds before the culture was transferred to nonradioactive medium and irradiated with 40
J/m? UV. The amount of 3H remaining in the DNA was then followed over time. This treatment
produces an average of 1 lesion every 6 kb [63], and, with irradiation time, would be estimated
to label 10-100 kb of DNA prior to the disruption of replication at sites of UV damage [47].
Greater than 95% of the parental cells survive this treatment, and replication efficiently
resumes at a time that correlates and depends on repair of the UV lesions [49]. Thus, we infer
that the events observed following these treatment conditions reflect mechanisms by which
cells process, recover, and survive UV damage.

In UV-irradiated wild-type cells, some limited degradation of the nascent DNA occurs at
times prior to the recovery of replication (Fig. 1A&B). In contrast, the degradation is much more
extensive in recF mutants, continuing until approximately half of the nascent DNA has been
degraded. By isolating the nascent DNA, the use of strand-specific probes has shown that the
degradation in these mutants is predominantly targeted to the nascent lagging strand [51]. The
extensive degradation in recF mutants correlates with a failure to restore DNA synthesis and
cell death [47]. By contrast, the nascent DNA is not extensively degraded in mutants lacking
RecBCD, despite the similar UV hypersensitivity in these cultures (Figure S1). Consistent with
this, recBCD mutants resume replication following UV irradiation with kinetics that are similar
to wild-type cells [47, 68, 69].

The failure to maintain or protect the nascent DNA in recF mutants can also be
visualized by examining the structural intermediates arising at disrupted replication forks on
plasmids such as pBR322 using two-dimensional (2-D) agarose gel analysis [49, 70]. Cells
containing the plasmid pBR322 were grown and UV-irradiated as before, and the genomic DNA
was then purified, digested with Pvull (which cuts the plasmid proximal to its unidirectional
origin of replication), and analyzed by 2-D agarose gels. In this approach, nonreplicating
plasmids migrate as linear 4.4-kb fragments, whereas replicating fragments, which form Y-
shaped structures, migrate slower due to their nonlinear shape and larger size. The replicating
fragments appear as an arc, extending out from the linear fragment (Fig. 1C). In wild-type cells,
the arrested replication fork undergoes a transient reversal after UV irradiation which is
protected and maintained by RecF, -O, and -R proteins until a time that correlates with lesion
repair by nucleotide excision repair and the resumption of replication. The extrusion of the
nascent DNA converts the three-arm, replication fork structure into a four-arm intermediate
that further retards mobility in the gel and migrates in a cone region above the replication arc
in the 2-D gel [71] (Fig. 1D). Consistent with this interpretation, in UV-irradiated recF mutants,
the nascent DNA degrades, and regressed, cone-region intermediates are not observed. In
contrast, the nascent DNA remains protected in recBC mutants and cone region intermediates
appear similar to that seen in wild-type cells. Taken together, the results demonstrate that
when replication is disrupted by UV-induced damage, RecF protects the nascent DNA from
degradation, in a manner that resembles BRCA2 [3, 4], whereas RecBCD does not appear to
process or access this substrate.

It is interesting to note that while both recF and recBCD mutants are sensitive to UV
exposure, only recF shows an effect on processing of UV-arrested replication forks. Previous
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studies have shown that following UV irradiation, replication continues to initiate from the
origin in recBCD mutants, despite their inability to complete the ongoing rounds of replication
[72]. This leads to large chromosomal imbalances centered around the origin, which may be
responsible for the hypersensitivity observed in these mutants.

RecQ-RecJ (WRN-DNA2 homolog), but not SbcC-SbcD (MRE11-RAD50 homolog), process the
DNA at UV-disrupted replication forks

In humans cells, both WRN-DNA2 and MRE11-RAD50 have been shown to partially
degrade the nascent DNA of replication forks following hydroxyurea treatment [13, 14, 16, 73,
74].

In E. coli, the WRN and DNA2 homologs, RecQ and ReclJ similarly degrade the nascent
DNA following the disruption of replication by UV-induced damage [49-51, 75]. Consistent with
their polarities, this degradation has been shown to predominantly occur on the nascent
lagging strand. However, whether the SbcC-SbcD structure-specific nuclease can access or
degrade these disrupted replication forks has not been examined.

To examine this question, we repeated the assay described above in recF mutants that
lacked these respective enzymes. As shown in Figure 2A and consistent with previous
observations, in the absence of either RecQ or ReclJ, the nascent strand degradation at
disrupted replication forks was eliminated during the initial time period prior to when
replication normally resumes. The amount of degradation was also diminished throughout the
200 minute period of the assay, relative to that in the recF background alone. We infer that the
degradation occurring during this later period likely represents aberrant processes that arise
when replication fails to recover and cell lethality ensues. Two hundred minutes represents a
duration of several cell cycles under these growth conditions, and greater than 99% of cells in
these recF populations fail to resume replication or survive. When we examined mutants
lacking SbcC and SbcD, the nascent DNA degradation occurred with the same kinetics and
extent as in the recF background alone.

The lack of processing by SbcC-SbcD can also be observed by 2-D agarose gel analysis.
Whereas in recF mutants, the regressed, nascent strand arm of the replication intermediate
remains unprotected and degrades, it is restored following inactivation of RecJ or RecQ, which
are responsible for its degradation (Figure 2B). However, inactivation of SbcC-SbcD was unable
to restore this regressed intermediate in the recF mutants.

It remains possible that processing by SbcC-ShcD requires RecF to be recruited to the
disrupted fork. To address this possibility, we also examined these mutants in an otherwise
wild-type background. As shown in Figure 3, the limited degradation that occurs in wild-type
cells did not occur in the absence of either Rec) or RecQ. However, the nascent degradation
still occurred in the absence of SbcC-SbcD. These observations demonstrate that Rec) and
RecQ partially degrade the nascent DNA at UV-disrupted replication forks, while RecF functions
to limit the extent of degradation occurring. In contrast, E. coli’'s SbcC-SbcD nuclease complex
does not access or degrade the nascent DNA of disrupted forks either in the presence or
absence of RecF protection. Taken together, these results indicate that SbcC-SbcD does not
process or have access to replication forks disrupted by UV-induced damage.

RecBCD, but not RecF, protects DNA at sites where replication forks converge.
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Recent work has demonstrated that completing DNA replication, a process in which two
replisomes converge, is a highly-regulated process that requires unique enzymatic processing
and is critical to maintain genome stability [76]. The completion of DNA replication can be
challenging to study in human cells, in part because thousands of origins initiate with varying
efficiencies and timing, making the loci where forks converge on the chromosomes highly
variable between cells and cell cycles. However in E. coli, completion occurs once per cell cycle
at a point opposite to its bidirectional origin of replication. The ability to complete replication
can be observed by profiling the copy number of sequences around the genome in replicating
cultures. In this technique, purified genomic DNA from replicating cultures is fragmented and
then sequenced by high throughout sequencing. The replication profile can then be determined
by counting the number of sequences that align to each region of the chromosome (Fig. 4A). In
wild-type cultures, sequences surrounding the bidirectional origin are observed at higher
frequencies because they replicate earlier than chromosome regions further removed from the
origin. The a given sequence’s frequency decreases inversely with its distance from the origin
until reaching the region where replication forks converge where the completion of replication
occurs (Fig. 4B). In the absence of recF, the profile of replication resembles that of wild-type
cells. However, in recBCD mutants, a dramatic loss of sequences is observed in the region
where replication forks converge (Fig. 4B). Considering that more than one half of sequence
reads in a population must correspond to the parental DNA strands, the observed two-fold
reduction in copy number of sequences in this region implies that most cells in the recBCD
population are unable to maintain this region of the chromosome. The inability to maintain the
chromosome in this region likely accounts for the impaired growth and low viability of these
strains. Thus, whereas RecF protects the nascent DNA at replication forks disrupted by UV,
RecBCD is specifically required to protect and prevent the degradation of DNA at sites where
replication forks converge.

SbcC-SbeD, but not RecQ-Recl, processes the DNA where replication forks converge

Recent work characterizing the completion of replication has shown that mutants
lacking SbcC-SbcD along with Exo | of E. coli are susceptible to amplifications and genetic
instability at loci where replication forks converge [60, 61, 76]. To determine if SbcC-SbcD is
responsible for the degradation of DNA at these loci, we repeated the analysis above in recBCD
mutants that also lacked the SbcC-SbcD nuclease. As shown in Figure 5, inactivation of SbcC-
SbcD reduced the exonucleolytic degradation that occurred in the absence of RecBCD
protection. In contrast, the amount and extent of degradation remained unchanged upon
inactivation of the RecJ nuclease in the recBCD mutant, indicating that this enzyme does not
access or process this substrate in vivo. Taken together, the observations demonstrate that the
structure-specific nuclease, SbcC-SbcD, but not RecJ, processes the DNA at loci where
replication forks converge.

Discussion

The results presented here indicate that whereas Rec) and RecQ process DNA at
replication forks disrupted by UV photoproducts, SbcC and SbcD process DNA at sites where
replication forks converge. While these proteins may have other cellular targets, the assays
reveal that RecJ-RecQ and SbcC-SbhcD each process unique replication fork DNA substrates and
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operate at distinct loci on the genome. This seems likely to be true for the majority of
situations when phenotypic redundancies between proteins are observed, given a lack of
evolutionary pressure to maintain truly redundant gene products in a genome. While proteins
may appear redundant with respect to a particular molecular or genetic phenotype, they likely
have unique cellular functions which the assay employed cannot reveal.

The human homologs of RecQ-Rec) and SbcC-SbcD, WRN-DNA2 and MRE11-RAD5S0,
have both been shown to process or partially degrade DNA at replication forks stalled by
treatment with hydroxyurea [3, 13, 14]. Yet mutations in these gene products each give rise to
distinct cancers, mutational signatures, and genetic instabilities, making it clear that they have
distinct cellular functions. Given the high level of conservation in the mechanistic process of
replication and repair, it is worth considering whether these various proteins associated with
human cancers are conserved, or partially conserved, with their bacterial counterparts.

In the case of BRCA2, the bacterial RecF, RecO, and RecR proteins appear to play a
functionally homologous role in protecting disrupted replication forks as well as limiting or
regulating the amount of nascent DNA that is degraded, despite a lack of sequence or structural
similarity (Figure 6). However, other human enzymes have also been reported to promote
stabilization and protection following stalls induced by hydroxyurea or disruption by cisplatin,
including FANCD2, ABRO1, BOD1L, VHL, and FANCA, suggesting these as other potential
candidates for RecF-O-R homologs [9—-12]. Perhaps structural similarities between BCRA2 or
other candidates will be revealed as we learn more about the specific conditions and substrates
which manifest their protection of replication fork DNA.

WRN and DNA2 appear to play a similar role in processing the nascent DNA at disrupted
replication forks as their bacterial counterparts, RecQ and ReclJ (Figure 6). WRN is a RecQ-
family helicase that shares partial sequence and structural similarity with RecQ [77]. Although,
DNAZ2 and RecJ do not contain any clear sequence homology, they do exhibit homology at a
functional level. Both DNA2 and RecJ encode 5’-exonucleases that act in concert with RECQ-
family helicases, and are stimulated by single-strand binding protein [13, 16, 18, 51, 53, 54].
Several studies have also reported that BLM, another RecQ-family helicase which causes
Bloom’s syndrome and cancer predisposition when mutated, also interacts and functions with
either DNA2, or EXOS5, a 5’ exonuclease, to process replication forks in a manner that appears
similar to WRN-DNAZ2, arguing that other RecQ-Rec) homologs may also operate at the
replication fork under alternative, or as yet, unidentified conditions [16, 73, 78].

The case of MRE11-RAD50 and the question of its functional homology with SbcC-SbcD
is more complex. Both proteins contain significant sequence and structural conservations with
their bacterial counterparts. However, in this work, we show that SbcC-SbcD does not process
nascent DNA at disrupted replication forks, but instead processes DNA at sites where
replication forks converge. Thus, one possibility is that despite their sequence and structural
conservation, E. coli SbcC-SbcD are not functionally conserved with their human counterparts.

The alternative possibility, worth considering, is that these proteins are functionally
conserved, and that human MRE11-RAD50 may not normally process DNA at stalled elongating
replication forks, but instead process other loci, such as those where replication forks converge
(Figure 7). The most common assay for monitoring replication fork processing in human cells
utilizes sequential pulse-labeling of cultures with the thymidine analogs, IdU and then CldU,
before treatment with hydroxyurea to stall replication. Genomic DNA is then purified from cells
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at various time points and spread on glass slides, before the labeled strands are visualized using
differently labeled fluorescent antibodies against each thymidine analog. Nascent DNA
degradation is inferred from a reduction in the length of the second, CldU tract-length, relative
to the first, IdU tract-length, over time following replication inhibition [3, 13].

Aspects of this assay suggest that other events, in addition to elongating replication
forks, could also be captured during the labelling process. E. coli’s 4.5-megabase genome
contains a single origin and completion site. This means that a 5-sec pulse-label of replication
forks progressing ~103 bases per second encompasses primarily elongating replication forks
[79]. In contrast, human cells contain thousands of origins and completion sites along their
chromosomes, averaging ~100 kilobases between these two points, with considerable variance
[80]. The two pulse-labels used in human cell assays often range from 20 to 90 minutes [3, 14,
30]. With an average fork speed of 50-100 bases per second, the labeled population would
cover most, or even entire replicons, and encompass significant proportions of initiation and
completion events, in addition to the elongation events [81]. Thus, although these assays
typically attribute the degradation to stalled elongation complexes, it remains possible that the
degradation occurs at other loci or substrates captured by this technique. This possibility
increases when one considers that only a small fraction of the labeled DNA is typically observed
to degrade within the subpopulation of the total labeled events [3, 14, 30].

There are other observations that suggest MRE11-RAD50 may be operating at sites
other than hydroxyurea-stalled replication forks. Processing by WRN-DNA2 or BLM-EXO5 is
detected in otherwise wild-type cells, and the processing is needed for the replication to
resume normally [13, 20, 73]. Similarly, RecQ-Rec] processing is critical for replication to
resume normally, and promote survival without mutagenesis [52]. In contrast, processing of
hydroxyurea-stalled replication forks by MRE11-RAD50 is only observed in the absence of
protection by BRCA2 [3, 29—-31]. The presence of other fork protection proteins, including
FANC]J, has also been reported to prevent MRE11-RAD50 from accessing stalled replication
forks [82]. Also notable is that Mrell mutants are not hypersensitive to hydroxyurea [83].
Taken together, the observations suggest that under normal conditions, MRE11-RAD50 may not
process, or have access to these elongating forks and that they may process other substrates in
the cell, such as convergent replication forks, that account for its essential role in embryonic
development and the normal cell cycle progression.

Although, analogous intermediates of the completion reaction have not been clearly
established in humans, potential candidates or homologs have been identified. hPifl, is a
helicase, associated with cancer growth that shares homology with RecD [84, 85] (Figure 7).
While hPifl phenotypes are pleiotropic and its precise cellular role remains undefined, it has
been suggested to have a replicational roles in a range of processes, including telomere
maintenance, resolving G-quartets, and unwinding RNA-DNA hybrids [86—88]. However in
yeast, the hPifl homologs, Pifl and Rrm3 are required to allow replication forks to converge,
and give rise to under-replicated intermediates, similar to recBCD in E. coli [89-92].

E. coli has long served as a useful model to dissect the highly conserved processes of
replication and repair in eukaryotes and mammals. This remains true and is sometimes under-
utilized. With respect to MRE11 and RAD5O, it is worth considering whether the genomic
instabilities arising in cancers containing mutations in these genes results from a fundamental
process such as completing replication. Many of the completion enzymes in E. coli are also
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sensitive to agents that generate double-stand breaks, and it has been noted that many double-
strand break repair intermediates resemble structures generated during the completion of
replication [93, 94]. Considering that MRE11-RAD50 also exhibit these hypersensitivities,
perhaps this may represent a form of damage where the enzyme complex is recruited to and
required for fork processing. Both replication initiation and completion events have distinct
features that can be identified and characterized in assays similar to those currently used to
assess fork processing in human cells. While alternative assays, similar to the replication
profiles used in E. coli, may also prove useful in addressing this question.
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Figure Legends

Figure 1. RecFOR, but not RecBCD, protects the nascent DNA at replication forks disrupted by
UV-induced damage. (A) The strategy for [H]-labelling the nascent DNA and total genomic DNA
is diagrammed. A replicating circular E. coli genome is shown in each panel with the [3H]-
labeled DNA shown in red. (B) RecF, but not RecBCD, is required to protect the nascent DNA
from degradation. The fraction of the radioactivity remaining in the DNA after UV irradiation is
plotted over time. The loss of nascent DNA (solid symbols, left panel) and genomic DNA (open
symbols, right panel) is shown for the parental strain (squares), recf (triangles), and recBCD
(circles). Plots represent the average of at least three independent experiments. Error bars
represent the standard error of the mean. C) Diagram depicting the migration pattern of
replication intermediates following Two-Dimensional (2-D) agarose gel analysis. The position of
i) nonreplicating fragments, ii) replicating fragments, and iii) disrupted replication fork
intermediates is shown. D) RecF, but not RecBCD, is required to maintain the integrity of the
disrupted replication fork intermediates. Cells containing the plasmid pBR322 were UV-
irradiated and analyzed by 2-D gels at the times indicated. In recF mutants, the nascent DNA is
degraded after UV irradiation, and the replication fork intermediates do not accumulate.
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Figure 2. RecJ and RecQ, but not SbcC-SbcD, degrade the nascent DNA at replication forks
disrupted by UV-induced damage in the absence of RecF protection. (A) Inactivation of RecJ or
RecQ, but not SbcC, prevents the nascent DNA degradation in UV-irradiated recF mutants.
Cultures were treated and analyzed as in Fig 1A and B. The loss of nascent DNA is plotted over
time for recF (squares), recFrecJ (triangles), recFrecQ (inverted triangles), and recFsbcC
(diamonds) mutants. Data for recF mutants is reproduced from Figure 1 and shown for
comparison. Plots represent the average of at least three independent experiments. Error bars
represent the standard error of the mean. (B) Inactivation of RecJ or RecQ, but not SbcC,
partially restores the disrupted replication fork intermediates in recF mutants. Cultures were
treated and analyzed as in Fig 1C and D. Southern blots of the migration pattern of replicating
pBR322 fragments are shown following electrophoresis in 2D agarose gels for recF, recFrecJ,
recFrecQ, and recFsbcC mutants after UV irradiation at the times indicated.

Figure 3. Rec) and RecQ, but not ShcC, degrades the nascent DNA at replication forks
disrupted by UV-induced damage in wild-type cells. Inactivation of RecJ or RecQ, but not SbcC,
prevents the nascent DNA degradation in UV-irradiated cells. Cultures were treated and
analyzed as in Fig 1A and B. The loss of nascent DNA is plotted over time for wild-type
(squares), rec/ (triangles), recQ (inverted triangles), and sbcC (diamonds) mutants. Data for
wild-type cells is reproduced from Figure 1 and shown for comparison. Plots represent the
average of at least three independent experiments. Error bars represent the standard error of
the mean.

Figure 4. RecBCD, but not RecF, protects the DNA at replication forks at loci where the
replisomes converge. (A) Diagram depicting the strategy of profiling replication across the E.
coli genome. (B) Inactivation of recBCD, but not recF, leads to extensive degradation at loci
where replication forks converge. Genomic DNA from replicating cultures was purified,
fragmented, and profiled using high-throughput sequencing. Normalized sequence read
frequencies are plotted relative to genome position. The line represents the 30-kb floating
average. The origin and terminus region where replication completes is indicated.

Figure 5. SbcC-ShcD, but not RecJ, processes the DNA at replication forks at loci where the
replisomes converge. Inactivation of sbcC-sbcD, but not recJ, reduces the amount of
degradation in recBCD mutants at loci where replication forks converge. Genomic DNA was
isolated and analyzed as in Fig 4. Replication profiles for recBCD, recBCDsbcCD, and recBCDrec)J
are plotted relative to genome position. Data for recBCD mutants is reproduced from Fig 4 and
shown for comparison.

Figure 6. Comparing Models of E. coli and Human Activities Associated with Restoring
Replication Following Disruption by DNA damage. Purple, Replisome Proteins; Green, Helicase-
Primase; Green Line, nascent DNA; Black Lines, Parental DNA; #, UV-induced lesion; Red, E. coli
Proteins; Blue, human proteins. (E. coli model derived in part from data presented here and in
[47-51, 95], Human model derived in part from data presented in [3, 3-5, 7, 8, 13, 14]).
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Figure 7. Current Model for Completing DNA Replication in E. coli and speculative human
comparison. Purple, Replisome Proteins; Green, Helicase-Primase; Green Line, nascent DNA;
Black Lines, Parental DNA; Red, E. coli Proteins; Blue, human proteins. (E. coli model derived in
part from data presented here and in [60-62, 72, 76, 94, 96, 97]), Proposed speculative human
activities derived in part from data presented in [32-37, 84, 89-92, 98]).

Supporting Documents:
Supplementary Figure S1. Survival following UV irradiation.
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Figure S1. Survival following UV irradiation. A) Fresh overnight cultures of the indicated strains were evenly applied on a Luria-
Bertani medium plate with a cotton swab. The plate was covered by a sheet of aluminum foil and placed under a 15 W
germicidal lamp (254 nm; 1 J/m2/s). The foil was progressively retracted following 20 J/m2 exposures. The irradiated plate
was then incubated at 37°C for overnight and photographed. B) Survival of the indicated strains following UV irradiation.
Graphs represent averages of at least two independent experiments. Error bars represent the standard error of the mean.
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BRCA2, MRE11-RAD50, and WRN-DNA2 encode human proteins that process replication
forks and result in distinct genetic instabilities and cancers when mutated.

Here, we show their bacterial homologs act on unique replication forks substrates-
those at DNA damage sites or as replication completes, and discuss their possible functional
conservation in humans.



