Transcription, Translation, and Protein Folding

I. RNA Structure

Ribose vs Deoxyribose Uracil vs Thymine

Properties: Reactivity, Stability, Secondary and Tertiary Structures

II. Transcription

RNA Polymerase and Chain Elongation 5'-3'

Transcription Initiation: promoters

Transcription Termination: factor independent and dependent termination

Independent termination: stable hairpin and AAAAs

Factor Dependent Termination: rho. Bind and Chase the polymerase

III. Ribosomal RNA (rRNA) and Transfer RNA (tRNA)

The bridge from transcription to translation

IV. Protein Structure

Amino acids join to make peptides and eventually proteins Primary, Secondary, Tertiary, Quaternary Structures

V. Translation

Ribosomes

50S (31 proteins + 23S rRNA + 5S rRNA) 30S (21 proteins + 16S rRNA) 70S the whole shabang

tRNAs

cognate aminoacyl-tRNA,

Reading Frames
The Genetic Code and Codons Redundant (The Wobble effect)

Nonsense (stop) codons, Initiation codons, Codon Usage

Translation Elongàtion

EF-Tu, EF-G, P-site, A-site

Translation Initiation

formylmethionyl-tRNAfmet, initiation factors EF1 EF2 EF3

Removal of the Formyl Group and Methionine

Translation Termination RF1 RF2 RF3, release?

VI. Polycistronic RNA

Polarity (translation influences transcription) and Coupling

VII. Protein Folding

Chaperones Cysteine and Disulfide isomerases Membrane sequences

VIII. Antibiotics that Block Transcription and Translation