WEEK 6 PROBLEMS

Problems From Chapter 4

4.1 The following classes and frequencies of ordered tetrads were obtained from the cross a+b+X a b in *Neurospora.* (Only one member of each pair of spores is shown,) What is the order of the genes in relation to the centromere?

4.2 The yeast Saccharomyces
cerevisiae has unordered
tetrads. In a cross made to
study the linkage relationships
among three genes, the tetrads
in the accompanying table were
obtained. The cross was
between a strain of genotype +
b c and one of genotype $a + +$,

	Spore	Number of				
1-2 a ⁺ b ⁺	3-4	5-6	7-8	asci		
	a+ b+	a b	ab	1766		
a+ b+	a b	a^+b^+	ab	220		
a+ b+	$a b^+$	a^+b	ab	14		

Tetrad type				Genotypes of spores in tetrads									Number of tetrads
1	a	+	+	a	+	+	+	Ь	с	+	Ь	с	132
2	a	b	+	a	b	+	+	+	с	+	+	с	124
3	а	+	+	a	+	С	+	b	+	+	b	c	64
4 Total	a	b	+	a	b	с	+	+	+	+	+	c	$\frac{80}{400}$

(a) From these data determine which, if any, of the genes are linked.

(b) For any linked genes, determine the map distances.

Problems from Chapter 5

5.1 A chromosome has the gene sequence *ABCDEF*G. What is the sequence following an inversion of genes C through *E*?

After a deletion of genes C through E?

5.2 Two chromosomes with the sequences *ABCDEFG* and MNO*P*Q*RSTUV* undergo a reciprocal translocation after breaks in E-*F* and *S-T*. What are the possible products? Which products are genetically stable?

5.3 A female cat with orange fur mates with a male with black fur. The resulting litter includes a male calico kitten that, when mature, proves to be sterile. Suggest a likely explanation.

5.4 Recessive genes *a*, *b*, c, *d*, *e*, and *f* are closely linked in a chromosome, but their order is unknown. Three deletions in the region are examined. One deletion uncovers *a*, *d*, and *e*; another uncovers c, *d*, and *f*; and the third uncovers *b* and c. What is the order of the genes?

5.5 In *Drosophila melanogaster*, the genes for *brown eyes (bw)* and *humpy thorax (hy)* are about 12 map units distant on the same arm of chromosome 2. A paracentric inversion spans about one-third of this region but does not include the genes mentioned. Explain what recombinant frequency between *bw* and *hy* you would expect in females that are:

(a) Homozygous for the inversion.

(b) Heterozygous for the inversion.