
Introduction to Genetics FALL 2025

EXAM II

Questions 1-3 refer to the cell shown on the right, which is from a diploid organism, 2n=4:

1. The cell shown on the right is from a diploid organism, 2n=4. If the cell appears as shown, what stage of meiosis is the cell likely to be in?

A)Prophase I

B) Prophase II

C) Anaphase I

D) Anaphase II

2. The cell shown on the right is from a diploid organism, 2n=4. If the cell appears as shown, how many double stranded DNA molecules are present in the cell?

A) 1

B) 2

C) 4

D 8

E) 16

3. The cell shown on the right is from a diploid organism, 2n=4. If there is only one gene on each chromosome, and the organism is hybrid at all loci, how many genotypically distinct *gametes* can the organism produce?

A) 1

B) 2

(C) 4

D) 8

E) 16

#*+#*+#*+#*+#*+#*+#*+#*+#*

4. A testcross between a trihybrid with and its corresponding *tester* would be expected to produce how many distinct genotypes

A) 3

B) 6

C) 8

D) 36

E) 64

5. A cross between two monohybrids would be expected to produce how many distinct genotypes

A) 1

B) 2

C) 3

D) 4

E) 8

#*+#*+#*+#*+#*+#*+#*+#*+#*+

Questions 6-7 refer to a brown (B) long eared (L) mouse of unknown genotype that appears *dominant* for both of these single gene traits.

6. You decide to perform a testcross to determine the genetic makeup of the unknown mouse. The genotype of the tester mouse that you use in your cross to determine this is:

A) BBLL

B) BB11

C) bbLL

D) BbL1

E) bbll

7. Following the testcross, you find that 50% of the mice are brown with long ears and 50% are brown with short ears. What is the genotype of the original unknown parent mouse.

A) BBL1

B) BB11

C) BbL1

D) bbLL

E) bbL1

Questions 8-9 refer to the following cross.

H U G E are four dominant genes controlling tomato size that are located on different chromosomes. A cross is carried out between Plant 1 with genotype-Hh Uu gg ee and Plant 2 of genotype-Hh Uu GG Ee.

- **8.** What percentage of the progeny are expected to be phenotypically identical to Plant 2?
 - A) 0
- B) 1/8
- C) 9/32
- D) 9/64
- E) 9/128
- 9. What percentage of the progeny are expected to be genotypically identical to Plant 2?
 - A) 0
- B) 1/8
- C) 9/64
- D) 3/8
- E) 3/4

#*+#*+#*+#*+#*+#*+#*+#*+#*+

Questions 10-12 refer to the following family.

A male and female are both heterozygous for the autosomal recessive allele for albinism. They have four children.

- 10. What is the probability that their oldest child has albinism?
 - A) ~ 0.079
- B) ~ 0.105
- C) 0.250
- D) ~0.316
- E) ~ 0.422
- 11. What is the probability that *only* their oldest child has albinism?
 - A) ~ 0.079
- $(8) \sim 0.105$
- C) 0.250
- D) ~ 0.316
- E) ~ 0.422
- 12. What is the probability that only one of their four children has albinism?
 - A) ~ 0.079
- B) ~ 0.105
- C) 0.250
- D) ~0.316
- E)~0.422

#*+#*+#*+#*+#*+#*+#*+#*+

Questions 13 - 14 refer to the following cross

You isolate six pure-breeding pea plants having mutations that produce wrinkled peas instead of the normal smooth peas. To determine if these mutations all occurred in the same gene, you cross each plant and examine the peas produced by the progeny. The results are summarized in the chart to the right.

"S" means the plants produced normal smooth peas.

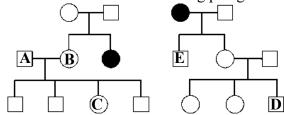
"W" means the plants produced wrinkled peas.

W S w w W S w S S b w S w s S W S ď W S е W

- 13. The mutations in plant c and plant e:
 - A) complement each other and are likely to be in different genes
 - B) do not complement each other and are likely to be in different genes
 - complement each other and are likely to be in the same gene
 - (D) do not complement each other and are likely to be in the same gene
 - E) are an example of incomplete dominance
- 14. How many different genes are presented in mutants a-f?
 - A) 1 B)
- 2
- (C)
- 3
- 4
- E)

5

D)


Questions 15-18 refer to the following cross.

A plant of genotype CC dd is crossed to a plant of genotype cc DD. The F_1 progeny is then testcrossed with a cc dd plant.

- **15.** If the genes are unlinked, the percentage of plants with genotype *cc dd* in the F₂ progeny will be
 - A) 12.5%
- B) 25 %
- C) 37.5%
- D) 50%
- E) 75%
- 16. If the genes are unlinked, the percentage of plants in the F_2 progeny with genotype $Cc\ dd$ progeny will be
 - A) 12.5%
- B) 25 %
- C) 37.5%
- D) 50%
- E) 75%
- 17. If the genes are 25 map units apart, the percentage of plants in the F_2 progeny with genotype $cc\ dd$ progeny will be
 - A) 12.5%
- B) 25 %
- C) 37.5%
- D) 50%
- E) 75%
- 18. If the genes are 25 map units apart, the percentage of plants in the F_2 progeny with genotype $Cc\ dd$ progeny will be
 - A) 12.5%
- B) 25 %
- (C) 37.5°
- D) 50%
- E) 75%

#*+#*+#*+#*+#*+#*

Questions 19-22 refer to the following pedigree involving a rare disease:

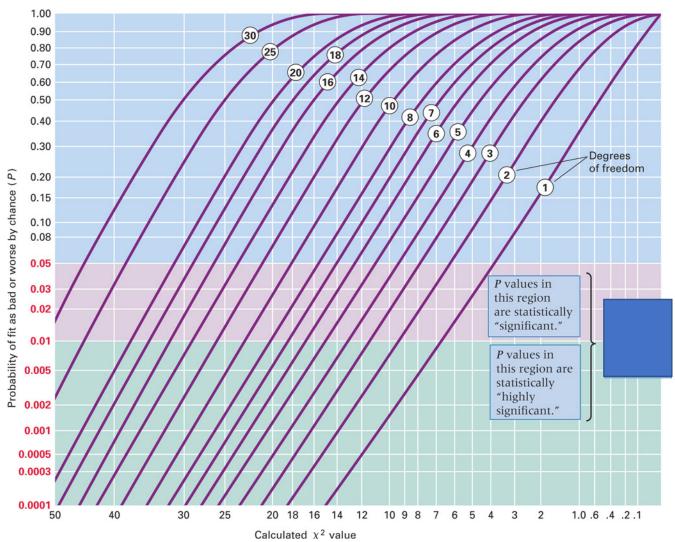
- 19. What is the *most* likely mode of inheritance of this disease?
 - A) Autosomal dominant
 - B) Autosomal recessive
 - X-linked dominant
 - D) X-linked recessive
 - E) Y-linked
- **20.** What are the genotypes of **D**'s parents?
 - A) Aa; AA B) AA; aa C) Aa; aa D) Aa; Aa E) Could be either Aa; AA or Aa; Aa
- **21.** What is the probability that **C** is a carrier of the disease?
 - A) 1/4
- B) 1/3
- C) 1/2
- D) 2/3
- E) 4/9
- **22.** If individuals C and D have a child, what is the probability that the child will have the disease?
 - A) 1/4
- B) 1/6
- C) 1/12
- D)1/24
- E) 1/36

Questions 23-27 refer to the following cross.

Hobbits are legendary creatures from Middle Earth whose dominant traits are Large (L), Hairy (*H*), Tough (T) feet. Data from a testcross with a trihybrid individual of these three linked genes are shown below.

Foot Phenotpye	genotype	#
Normal	LlHhTt	340
Small Hairless Soft	llhhtt	330
Small	llHhTt	120
Hairlesss Soft	Llhhtt	110
Small Hairless	llhhTt	40
Soft	LlHhtt	40
Hairless	${ t LlhhTt}$	10
Small Soft	11H h tt	10
	Total	1000

- 23. Which of the following represents a recombinant with respect to H and T
 - A)LlHhTt (B)LlHhtt C)llhhtt D)Llhhtt E)llHhTt
- 24. What is the recombination frequency with respect to L and H?
 - A) 10% B) 16% (C) 25% D) 31% E) 33%
- **25.** The order of these three genes is?
 - (A) LHT (B) HTL (C) TLH (D) A or B could be correct (E) B or C could be correct
- **26.** How many double recombinants were observed in this cross?
 - A) 16 (B) 20 C) 25 D) 31 E) 33
- 27. Based on the number of double recombinants you actually observed, what is the degree of interference for this region?


A) 0.2 B) ~0.4 C) 0.5 D) 0.6 E) 0.8

Questions 28-33 refer to the following cross.

Two dominant alleles in mice both affect the appearance of the tail. Shorty (S) produces mice with short tails and hairy (H) produces mice with hairy tails. A testcross was carried out between a dihybrid male Ss Hh and tester female ss hh that produced the following baby mice:

Phenotype	Genotype	Progeny	
Short hairy tail	$\it Ss$ $\it Hh$		5
Long bald tail	ss hh		5
Short bald tail	Ss hh		15
Long hairy tail	ss Hh		<u>15</u>
Total	_		40

	-	bald tal		ss nn		5		
		t bald ta		Ss hh		15		
		hairy ta	il	ss Hh		$\frac{15}{40}$		
	Tota	1				40		
28.	If the genes as been?	re unlinked, w	what would the	expected nu	ımber of shor	t bald tail mic	e have	
	A) 5	(B) 1	0 C) 2	0 I	D) 30	E) 40		
29.	Based on these phenotypes, a Chi-square analysis to test the hypothesis that the <i>shorty</i> and <i>hairy</i> genes sort independently would have how many degrees of freedom in the analysis?							
	A) 0	B) 2	(C) 3	D) 4	E) 20			
30.	The Chi-square value from the hypothesis that the <i>shorty</i> and <i>hairy</i> genes sort independently is							
	A) 2.0	B) 2.5	(C) 10.0	Ι	D) 13.3	E) 25	.0	
31.	The probability	ty (the P valu	ue chart is on the last page) from your Chi-square analysis is					
	A) ~0.0015	B)~0.02	C) ~	0.15	D) ~0.	5	E) ~0.6	
32.	Based on this	data and you	r Chi-square ar	alysis, wha	t does this P	value allow yo	ou to say?	
	A) we cannot reject the hypothesis that the <i>shorty</i> and <i>hairy</i> genes sort independently B) we reject the hypothesis that the <i>shorty</i> and <i>hairy</i> genes sort independently C) we cannot reject the hypothesis that the <i>shorty</i> and <i>hairy</i> genes are linked D) we reject the hypothesis that the <i>shorty</i> and <i>hairy</i> genes are linked E) we accept the hypothesis that the <i>shorty</i> and <i>hairy</i> genes are linked							
33.	Based on you	r analysis, wł	nat were the par	rental chron	nosomes in th	e dihybrid ma	le?	
	A) <u>SH</u> <u>sh</u>	B) <u>SH</u> <u>SH</u>	C) <u>sh</u> <u>sh</u>	(D) <u>sh</u>	<u>S</u> <u>h</u> E) A o	r D could be c	orrect	

Potentially Useful formulas

For n trials, the probability that A, having probability p, is realized s times and B, having probability q, is realized t times is equal to $(n!)/(s!t!) \times (p^s q^t)$

% Recombinants = (# recombinants) / (# total progeny) x 100%

map distance = $(\# recombinants) / (\# total progeny) \times 100$

 $\label{lem:coefficient} Coefficient of coincidence = Observed \ double \ recombinants \ / \ Expected \ double \ recombinants \ Interference = 1 - Coefficient \ of \ coincidence$

$$\chi^2 = \sum (\text{observed} - \text{expected})^2 / \text{expected}$$