Introduction to Genetics

FALL 2023
EXAM II

1. The labeled parts of the eukaryotic chromosome shown above could be labeled as:
A) $\mathrm{A}=$ Centromere; $\mathrm{B}=$ Euchromatin; $\mathrm{C}=$ Telomere; $\mathrm{D}=$ Heterochromatin; $\mathrm{E}=$ Centromere
B) $A=$ Telomere; $\mathrm{B}=$ Euchromatin; $\mathrm{C}=$ Centromere; $\mathrm{D}=$ Euchromatin; $\mathrm{E}=$ Heterochromatin $A=$ Heterochromatin; $B=$ Centromere; $C=$ Telomere; $D=$ Euchromatin; $E=$ Heterochromatin
D) $\mathrm{A}=$ Telomere; $\mathrm{B}=$ Heterochromatin; $\mathrm{C}=$ Centromere; $\mathrm{D}=$ Heterochromatin; $\mathrm{E}=$ Telomere
E) $\mathrm{A}=$ Telomere; $\mathrm{B}=$ Heterochromatin; $\mathrm{C}=$ Centromere; $\mathrm{D}=$ Heterochromatin; $\mathrm{E}=$ Euchromatin
```
#*+#*+#*+#*+#*+#*+#*+#*+#*+#*+#*+
```

Questions 2-5 refer to the cell shown on the right, which is from a diploid organism, $2 \mathrm{n}=4$:
2. The cell shown on the right is from a diploid organism, $2 n=4$. If the cell appears as shown, what stage of meiosis is the cell likely to be in?

A) Prophase I
B) Prophase II
C) Anaphase I
D) Anaphase II
E) Telophase II
3. The cell shown on the right is from a diploid organism, $2 n=4$. At what stage of meiosis would the centromeres of each chromosome separate and get pulled apart?
A) Prophase I
B) Prophase II
C) Anaphase I
D) Anaphase II
E) Telophase II
4. The cell shown on the right is from a diploid organism, $2 n=4$. If the cell appears as shown, how many double stranded DNA molecules are present in the cell?
A) 1
B) 2
C) 4
(D) 8
E) 16
5. The cell shown on the right is from a diploid organism, $2 n=4$. If there is only one gene on each chromosome, and the organism is hybrid at all loci, how many genotypically distinct gametes can the organism produce?
A) 1
B) 2
(C) 4
D) 8
E) 16

Questions 6-7 refer to a brown (B) long eared (L) mouse of unknown genotype that appears dominant for both of these single gene traits.
6. You decide to perform a testcross to determine the genetic makeup of the unknown mouse. The genotype of the tester mouse that you use in your cross to determine this is:
A) BBLL
B) BBll
C) bbLL
D) BbLl
bbll
7. Following the testcross, you find that 50% of the mice are brown with long ears and 50% are brown with short ears. What is the genotype of the original unknown parent mouse.
A) BBLl
B) BBll
C) BbLl
D) bbLL
E) bbLl

```
#*+#*+#*+#*+#*+#*+#*+#*+#*+#*+#*+
```

8. A testcross between a trihybrid with and its corresponding tester would be expected to produce how many distinct genotypes
A) 3
B) 6
C) 8
D) 36
E) 64
9. A cross between two monohybrids would be expected to produce how many distinct genotypes
A) 1
B) 2
C) 3
D) 4
E) 8
\#*+\#*+\#*+\#*+\#*+\#*+\#*+\#*+\#*+\#*+\#*+
Questions 10-13 refer to the following family.
A male and female are both heterozygous for the autosomal recessive allele for albinism. They have four children.
10. What is the probability that their oldest child has albinism?
A) ~ 0.079
B) ~ 0.105
C) 0.250
D) ~ 0.316
E) ~ 0.422
11. What is the probability that only their oldest child has albinism?
A) ~ 0.079
(3) ~ 0.105
C) 0.250
D) ~ 0.316
E) ~ 0.422
12. What is the probability that only one of their four children has albinism?
A) ~ 0.079
B) ~ 0.105
C) 0.250
D) ~ 0.316
(E) ~ 0.422
13. If none of the children have albinism, and the couple decides to have a fifth child, what is the probability that child number 5 will have albinism?
A) ~ 0.079
B) ~ 0.105
00.250
D) ~ 0.316
E) ~ 0.422

Questions 14-17 refer to the following cross.
A plant of genotype $C C d d$ is crossed to a plant of genotype $c c D D$. The F_{1} progeny is then testcrossed with a $c c d d$ plant.
14. If the genes are unlinked, the percentage of plants with genotype $c c d d$ in the F_{2} progeny will be
A) 12.5%
(3) 25%
C) 37.5%
D) 50%
E) 75%
15. If the genes are unlinked, the percentage of plants in the F_{2} progeny with genotype $C c d d$ progeny will be
A) 12.5%
(3) 25%
C) 37.5%
D) 50%
E) 75%
16. If the genes are 25 map units apart, the percentage of plants in the F_{2} progeny with genotype $c c d d$ progeny will be
A) 12.5%
B) 25%
C) 37.5%
D) 50%
E) 75%
17. If the genes are 25 map units apart, the percentage of plants in the F_{2} progeny with genotype $C c d d$ progeny will be
A) 12.5%
B) 25%
(C) 37.5%
D) 50%
E) 75%
\#*+\#*+\#*+\#*+\#*+\#*+\#*+\#*+\#*+\#*+\#*+
Questions 18-19 refer to the following cross.
H U G E are four dominant genes controlling tomato size that are located on different chromosomes. A cross is carried out between Plant 1 with genotype-Hh Uu gg ee and Plant 2 of genotype-Hh Uu GG Ee.
18. What percentage of the progeny are expgeted to be phenotypically identical to Plant 2 ?
A) 0
B) $1 / 8$
C) $9 / 32$
D) $9 / 64$
E) $9 / 128$
19. Whatpergentage of the progeny are expected to be genotypically identical to Plant 2 ?
A) 0
B) $1 / 8$
C) $9 / 64$
D) $3 / 8$
E) $3 / 4$

Questions 20-21 refer to the following cross

You isolate six pure-breeding pea plants having mutations that produce wrinkled peas instead of the normal smooth peas. To determine if these mutations all occurred in the same gene, you cross each plant and examine the peas produced by the progeny. The results are summarized in the chart to the right. "S" means the plants produced normal smooth peas. "W" means the plants produced wrinkled peas.

	a	b	c	d	e	1
a	W	W	S	W	S	S
b		W	S	W	S	S
c			W	S	W	S
d				W	S	S
e					W	S
f						W

20. The mutations in plant c and plant e:
A) complement each other and are likely to be in different genes
B) do not complement each other and are likely to be in different genes
C) complement each other and are likely to be in the same gene
D) do not complement each other and are likely to be in the same gene
E) are an example of incomplete dominance
21. How many different genes are presented in mutants a-f?
A) 1
B) 2
C) 3
D) 4
E) 5
$\# *+\# *+\# *+\# *+\# *+\# *+\# *+\# *+\# *+\# *+\# *+$
22. The following pedigree depicts the inheritance of a rare hereditary disease affecting muscles:

What is the most likely mode of inheritance of this disease?
A) Autosomal dominant
B) Autosomal recessive
C) X-linked dominant
D) X-linked recessive
D) Y-linked

Questions 23-27 refer to the following pedigree involving a rare disease:

23. What is the most likely mode of inheritance of this disease?
A) Autosomal dominant
B) Autosomal recessive
C) X-linked dominant
D) X-linked recessive
E) Y-linked
24. What is the genotype of \mathbf{B} ?
$\begin{array}{llll}\text { A) AA } & \text { B) Aa } & \text { C) } 1 / 3 \text { chance that it is Aa } & \text { D) } 1 / 2 \text { chance that it is Aa }\end{array}$ E) 2 chance that it is Aa
25. What are the genotypes of \mathbf{D} 's parents?
A) $4 \mathrm{a} ; \mathrm{AA}$
B) AA;aa
C) $\mathrm{A} a ; \mathrm{aa}$
D) $\mathrm{Aa} ; \mathrm{Aa}$
E) Could be either $\mathrm{Aa} ; \mathrm{AA}$ or $\mathrm{Aa} ; \mathrm{Aa}$
26. What is the probability that \mathbf{C} is a carrier of the disease?
A) $1 / 4$
B) $/ 3$
C) $1 / 2$
D) $2 / 3$
E) $4 / 9$
27. If individuals C and D have a child, what is the probability that the child will have the disease?
A) $1 / 4$
B) $1 / 6$
C) $1 / 12$
(D) $1 / 24$
E) $1 / 36$

Questions 28-33 refer to the following cross.
Two dominant alleles in mice both affect the appearance of the tail. Shorty (S) produces mice with short tails and hairy (H) produces mice with hairy tails. A testcross was carried out between a dihybrid male $S s H h$ and tester female $s s h h$ that produced the following baby mice:

Phenotype	Genotype	Progeny	
Short hairy tail	Ss Hh	5	
Long bald tail	SS hh	5	
Short bald tail	SS hh	15	
Long hairy tail	SS Hh		$\underline{15}$
Total			

28. If the genes are unlinked, what would the expected number of short bald tail mice have been?
A) 5
B) 10
C) 20
D) 30
E) 40
29. Based on these phenotypes, a Chi-square analysis to test the hypothesis that the shorty and hairy genes sort independentlywould have how many degrees of freedom in the analysis?
A) 0
B) 2
C) 3
D) 4
E) 20
30. The Chi-square value from the hypothesis that the shorty and hairy genes sort independently is
A) 2.0
B) 2.5
C) 10.0
D) 13.3
E) 25.0
31. The probability (the P value chart is on the last page) from your Chi-square analysis is
A) ~ 0.0015
(3) ~ 0.02
C) ~ 0.15
D) ~ 0.5
E) ~ 0.6
32. Based on this data and your Chi-square analysis, what does this P value allow you to say?
A) we cannot reject the hypothesis that the shorty and hairy genes sort independently
B) we reject the hypothesis that the shorty and hairy genes sort independently
C) we cannot reject the hypothesis that the shorty and hairy genes are linked
D) we reject the hypothesis that the shorty and hairy genes are linked
E) we accept the hypothesis that the shorty and hairy genes are linked
33. Based on your analysis, what were the parental chromosomes in the dihybrid male?
A) $\underline{S H} \underline{s h}$
B) $\underline{\mathrm{SH}} \underline{\mathrm{SH}}$
C) $\underline{s h} \underline{s h}$
(D) $\underline{s H}$ Sh
E) A or D could be correct

Potentially Useful formulas

For n trials, the probability that A, having probability p, is realized s times and B, having probability q, is realized t times is equal to $(\mathrm{n}!) /(\mathrm{s}!\mathrm{t}!) \times\left(p^{s} q^{\mathrm{t}}\right)$
$\%$ Recombinants $=(\#$ recombinants) $/(\#$ total progeny $) \times 100 \%$ map distance $=(\#$ recombinants) $/(\#$ total progeny) $\times 100$

Coefficient of coincidence $=$ Observed double recombinants $/$ Expected double recombinants Interference $=\mathbf{1}$ - Coefficient of coincidence
$\chi^{2}=\sum(\text { observed }- \text { expected })^{2} /$ expected

