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Topography plays an important role in influencing the behavior of wildfires in forested landscapes. Unlike other
factors that change over time (e.g. climate, weather, fuel aridity), topography is relatively static and therefore easier to
quantify as an influential factor. Within recently field sampled wildfire perimeters on Mt. Adams, WA and Mt. Jefferson,
OR, spatially derived burn severity (RANBR) was compared to five measures of topography derived from a Digital
Elevation Model (DEM) at a spatial scale of 30m. These topographic variables included elevation, slope, Heat Load
Index (HLI), Topographic Wetness Index (TWI), and Topographic Roughness Index (TRI). Cell by cell correlation
between variables was explored using a correlation matrix in R. Topographic variables were unsurprisingly at least
moderately collinear. To account for geographic relationships, a limited number of Geographically Weighted
Regression (GWR) models were developed using ArcGIS. Among the two field sites, the TWI GWR model best fit the
data and had the highest R2 values (0.92, 0.83). TWI is a steady-state wetness index that indicates where water is
most likely to be funneled to and pool in. Intuitively, forest stands with a high moisture content during a fire are less
likely to catch fire or burn at high severities. Within these field sites, the TWI appears to be the best topographic

predictor of wildfire burn severity.

Keywords: Wildfire, Topography, Burn Severity, Heat Load Index, Topographic Roughness Index, Topographic
Wetness Index, Central Cascades, Vegetation Mortality, Forest Regeneration, RANBR.



Can Wildfire Burn Severity be Explained
by Measures of Topography?

Mt. Adams, WA Mt. Jefferson, OR
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Why do some burned area have nearby live trees, and others don’t?
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= No nearby live trees (seed source) = poor post-fire tree regeneration




Drivers of Wildfire Burn Severity

(Conceptual Understanding)

Pre-fire Climate

a. Winter snowpack, Spring/Summer temperature and precipitation

Weather Conditions During Fire * Fire Regime

a. Temperature, precipitation, and active winds Regions - (‘\\*‘“}\'
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Forest Composition g e ‘ —

a. Certain vegetation is more or less flammable - inhibit or spread fire = /
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Forest Fuel Density / \ (Higuera 2015)

a. How dense is vegetation pre-fire; generally more fuel = more fire s Dat D e

Topographic Factors TIME

a. Static landscape properties that influence all of the above factors



Flat topography; no wind )4\ Q_l‘;“
Influence of Topography
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Flat topography; wind —r= s
Topography influences wildfire behavior through: /u“w‘
1. Convective funneling of hot air masses Hillslope and wind / <
2. Buffer or funnel for wind
3. Alters the flow and accumulation of precipitation runoff
4. Alters soil and vegetation moisture (slope, runoff)
5. Aspect & Slope alter solar radiation potential (site wetness)



Research Methods

For my field research areas on Mt. Adams and Mt. Jefferson:

1. Derive wildfire burn severity (RDNBR) as my dependant variable from MTBS data (30m resolution)

2. Derive topographic explanatory variables from a DEM that may conceptually explain burn severity

a. Elevation

Slope

Heat Load Index (HLI)

Topographic Wetness Index (TWI)
Topographic Ruggedness Index (TRI)
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3. Mask all layers to burn perimeters
4. Explore variable correlation using a correlation matrix in R

5. Develop Geographically Weighted Regression (GWR) models in ArcGIS



Relativized differenced Normalized Burn Ratio (RDNBR)
Wildfire Burn Severity metric
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(McCune and Keon 2002)

Heat Load Index (HLI)
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Topographic Wetness Index (TWI)

(Beven and Kirkby 1979)




Topographic Roughness Index (TRI)

10x10 window (9ha)

Mt Jefferson

(Riley et al. 1999; Krawchuk et al. 2016)
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Issues:

e GWR would not run with some of the predictor variables; Elevation, HLI, Slope

Geographically Weighted Regression

e Poor performance of the multiple regression models is likely due to collinearity of variables

Mt. Adams Performance | Response | Predictor{(s)| Sigma AlCc R2 R2 Adj Residual Squares
Model 1 #2 RDNBR TRI 150 741,677 0.84 0.83 1,253,251,222
Model 2 #1 RDNBR TWI 115 715,833 0.92 0.9 624,967,802
Model 3 #3 RDNBR Slope 163 750,778 0.81 0.8 1,487,800,704
Model 4 [N RDNBR | TWI+TRI | 167 754,106 | 0.8 0.79 1,562,712,827

Mt. Jefferson | Performance | Response | Predictor(s)| Sigma AlCc R2 R2 Adj Residual Squares
Model 1 #2 RDNBR TRI 207 353,019 0.58 0.58 1,115,989,903
Model 2 #1 RDNBR TWI 139 334,100 | 0.83 0.81 439,417,900
Mode13 |G RDNBR | TWi+TRI | 213 354415 | 056 | 055 1,170,892,586

Results:

e Across both field sites, the Topographic Wetness Index (TWI) produced the best GWR model

and explained the most variance (R2) in wildfire burn severity.




Do These Results Make Sense?
Yes!

TWI is a steady-state wetness index.

Shows where water topographically is most likely to
be funneled to and pool in.

Forests stands with a high moisture content during
a fire are much less likely to burn!

Therefor high TWI values should relate to a lower
RDNBR values.

Take results with a grain of salt, non-topographic
factors are important and can overpower influence
of TWI.
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Datasets

1.
2.

Burn Severity (RANBR): Monitoring Trends in Burn Severity (MTBS)
10m DEM: University of Washington (WA); Oregon Spatial Data Library (OR)




