Using DEM Reconditioning (AGREE) in an Urban Watershed with LIDAR Data

Charles Rudnick

Abstract

GIS software can automatically delineate watersheds by simulating the flow of virtual rainwater on a Digital Elevation Model (DEM). But if you have access to data that displays the actual locations of streamflow there are several techniques to use this data to better simulate the flow of virtual water. One of these techniques, DEM reconditioning with AGREE, was used to delineate urban watersheds on a LIDAR derived DEM of Tryon Creek, Portland OR. The watershed delineation process takes too long to compute at the 3ft resolution the LIDAR data was collected in, so it was resampled to 30ft for the whole watershed, but a subwatershed within Tryon Creek was examined at the highest possible resolution in order to evaluate AGREEs effectiveness on both large and small scale spatial resolutions. A model was built to automate the 6 steps of the watershed delineation process (fill sinks, calculate flow direction, calculate flow accumulation, identify streams/pour points, link streams, and finally delineate watersheds) and both a control DEM and a reconditioned DEM were fed through on two scales each. The outputs showed that the largest urban interference with the model was from majors roads and that the AGREE method was method was most effective on the higher resolution DEM.

Challenges

- The LIDAR data was too high resolution to do a flow accumulation on so I had to choose whether to reduce my resolution or my study area, I decided to do both.
- I was hesitant to use a sub-watershed because I didn't know how it should look ahead of time.
- Flow accumulation really doesn't like LIDAR data.

Watershed_ctrl_Model	×
Processing 3 of 6	
Updating flow accumulation	100 % 🔳

Methods

- I Built a model in the model builder to perform the entire watershed delineation process at once.
- I only things I had to change were the input DEMs, the output file names, and the resample if I didn't need it.
- Then I created a series of modified Lidar DEMs to run through the model.

Methods

Arc Hydro Toolset was used for the DEM reconditioning.

Arc Hydro Tools		
Terrain Preprocessing Terrain Morphology Watershed Processing Attribute Tools Network Tools		
Data Management Terrain Preprocessing	<u> </u>	
DEM Manipulation	Data Management DEM Manipulation	
Flow Direction	Create Drainage Line Structures	
Adjust Flow Direction in Sinks	Create Sink Structures	
Adjust Flow Direction in Streams	Level DEM	
Adjust Flow Direction in Lakes	DEM Reconditioning	
Flow Accumulation	Assign Stream Slope	
Stream Definition	Burn Stream Slope	
Stream Segmentation	Build Walls	
Combine Stream Link and Sink Link	Sink Prescreening	
Catchment Grid Delineation	Sink Evaluation	
Catchment Polygon Processing	Depression Evaluation	
Drainage Line Processing	Sink Selection	
Adjoint Catchment Processing	Fill Sinks	

Unassisted automatic delineation

112 watersheds

Value

. .

978.812

Subwatershed with 3ft LIDAR Resolution

17 watersheds

AGREE

 Used the archydro toolbar to perform DEM conditioning with AGREE.

1000

AGREE on a 3ft subwatershed

13 watersheds

Conclusion

- Major roads are a problem.
- Hydrology tools can take a crazy long time.
- DEM conditioning with AGREE is more helpful on a smaller scale and higher resolution.

Questions?

resources

Baker, M. E., Weller, D. E., and Jordan, T. E. 2006. Comparison of automated watershed delineations: Effects on land cover areas, percentages, and relationships to nutrient discharge. *Photogrammetric Engineering & Remote Sensing*, 72(2): 159-168.

Duh, Geoffrey GEOG 493 Lecture slides retrieved from http://web.pdx.edu/~jduh/

Esri help online at http://pro.arcgis.com/en/pro-app/tool-reference/

Data from PSU GIS resources 2017