Julian Cross GEOG 593 Department of Geography Portland State University 12/5/16

Structure from Motion Photogrammetry for 3D Reconstruction of Crater Glacier on Mount St. Helens, Washington, USA

Abstract:

The Crater Glacier on Mount St. Helens is rare compared to most glaciers in the coterminous United States in that it is advancing – at a rate approximately 10 cm per day (USGS, 2013). The May 1980 eruption of Mount St. Helens created a deep, north facing crater and consequently provides a perfect environment for this glacier to grow. Yearly measurement and mapping campaigns of the terminus of Crater Glacier are carried out by the USGS (Walder et al, 2009). This study presents a flexible, cost-effective and accurate method for measuring crater glaciers growth as an alternative to aerial lidar or ground GPS surveys. A UAV-based photo acquisition and 3D image reconstruction methodology was used to create 3D models of the glacier terminus. On October 11th, 2016, 237 photos were acquired using a quadcopter platform and GoPro HERO 3 camera. Photos were processed using a Structure from Motion workflow with Pix4D software. An accuracy assessment of the models, using 11 GPS validation points, shows that the most accurate model yielded a RMSE of 0.37 meters at 0.1-meter pixel size. Furthermore, glacier and topographical change was analyzed by comparing the new DEMs to a lidar derived DEM from 2009. This change detection showed the glacier at its terminus has a max depth of 60 meters. In future studies an improved ground control methodology could be used to increase the accuracy and number of both control and test points. Additionally, a time series of 3D models could allow observation of topographic change of glacier movement between summer seasons.

STRUCTURE FROM MOTION PHOTOGRAMMETRY FOR 3D RECONSTRUCTION OF CRATER GLACIER ON MOUNT ST. HELENS, WASHINGTON, USA

Julian Cross

GEOG 593 Department of Geography Portland State University

12/5/16

ABSTRACT

The Crater Glacier on Mount St. Helens is rare compared to most glaciers in the coterminous United States in that it is advancing – at a rate approximately 10 cm per day (USGS, 2013). The May 1980 eruption of Mount St. Helens created a deep, north facing crater and consequently provides a perfect environment for this glacier to grow. Yearly measurement and mapping campaigns of the terminus of Crater Glacier are carried out by the USGS (Walder et al, 2009). This study presents a flexible, cost-effective and accurate method for measuring crater glaciers growth as an alternative to aerial lidar or ground GPS surveys. A UAV-based photo acquisition and 3D image reconstruction methodology was used to create 3D models of the glacier terminus. On October 11th, 2016, 237 photos were acquired using a quadcopter platform and GoPro HERO 3 camera. Photos were processed using a Structure from Motion workflow with Pix4D software. An accuracy assessment of the models, using 11 GPS validation points, shows that the most accurate model yielded a RMSE of 0.37 meters at 0.1-meter pixel size. Furthermore, glacier and topographical change was analyzed by comparing the new DEMs to a lidar derived DEM from 2009. This change detection showed the glacier at its terminus has a max depth of 60 meters. In future studies an improved ground control methodology could be used to increase the accuracy and number of both control and test points. Additionally, a time series of 3D models could allow observation of topographic change an glacier movement between summer seasons.

INTRODUCTION

Why study and map glaciers?

- Glaciers serve as proxy for global climate change
 - Satellite imagery for monitoring retreat or growth
 - Extent and coverage for estimating glacier mass balance
 - Mass balance is the ratio of accumulation and ablation
- In many places, glaciers serve as fresh water storage
 - Volume estimation and snow water equivalent
- Glacier retreat can drive periglacial hazards, e.g. debris flows and outburst floods

STUDY AREA

PRIOR STUDIES

First video courtesy of USGS (2013); Second courtesy of USGS (2012)

PRIOR STUDIES

MISSION PLANNING

- Four separate flights (~10 minutes) and only fourth flight was successful (~20 minutes)
- 70% sidelap
- 70% overlap
- Flight height was ~395 feet AGL
- Photo time interval was 1 second
- Camera GoPro HERO4 Silver

MISSION PLANNING

WEATHER AND DAY LIGHT

			heaviest on Sun night. Mild temperatures (max 43°F on Fri night, min 34°F on Fri morning). Winds decreasing (near gales from the WSW on Sat night, moderate winds from the NW by Sun night).							morning). Winds increasing (calm on Mon night, strong winds from the SSW by Wed night).										
	and the second second	Metric 🔟	Friday +			Saturday 8			Sunday 9			Monday 10			Tuesday 11			Wednesday 12		
122	1	Imperial 💿	АМ	PM	night	AM	PM	night	AM	PM	night	AM	PM	night	AM	PM	night	AM	PM	night
	1	<u>See all</u> <u>weather</u> <u>maps</u>		Light		Незуу	Light		HEAVY	Неачу										
Astronomy		Wind (mph)	25) light	D light	30 heavy	25 heavy	25 light	35	25 heavy	eavy heavy	C.	6,	6,	6	б	Ô	T	some	some	20 rain
	-	Summary	snow	rain	rain	rain	rain	shwrs	rain	rain	shwrs	clear	clear	clear	clear	clear	shwrs	clouds	clouds	shwrs
Oct. 11, 2016	Rise	Snow (in)	0.8	1	1	-		-	15%	17	5.9	-	1.2	- 20		-	100	1	-	-
		Rain (in)		0.0	0.7	0.8	0.1	0.2	0.8	2.1	1.0		3	-	100	-	0.1	1.00	1.0	2.1
Actual Time	7:24 AM PDT	High °F	36	37	43	43	43	43	41	41	37	36	37	39	39	43	45	43	41	39
		Low °F	34	36	37	43	43	43	41	41	34	36	37	39	39	41	43	41	41	36
Civil Twilight	6:53 AM PDT Chill *1 Freezin level (ft	Chill °F	23	28	32	34	34	32	30	30	27	28	32	39	34	39	39	36	32	28
		Freezing level (ft)	7900	8700	10300	10000	10500	10300	9800	9500	7900	7900	8900	9400	10300	10200	10300	9200	8900	8200
Nautical Twilight	6:18 AM PDT	1500011														¢				
Astronomical Twilight	5:43 AM PDT	900011		>	5	-	1	-	-	>	~			~	-		-	-)

FIELD DAY

PROCESSING

PROCESSING

- 237 photos used
- 2 different extents first with DEM2 and then second with DEM3 and DEM4
- 2 different geotag time offsets first with no offset on DEM2 and DEM3 and then 0.095 second offset with DEM4
- 7 cm pixel size for DEM2 (resampled to 10 cm) and 10 cm pixel sixe for DEM3 and DEM4
- Processing time was about ~12 hours

FINAL MODEL

RESULTS

Table 1. Evaluation of the residuals for the 9 GCPs used for georeferencing of the 3D models.

	Error X [m]	RMSE X [m]	Error Y [m]	RMSE Y [m]	Error Z [m]	RMSE Z[m]
DEM2	-0.0071	0.0491	-0.0051	0.0528	0.0043	0.0523
DEM3	-0.0071	0.0491	-0.0051	0.0528	0.0043	0.0523
DEM4	-0.0087	0.0503	-0.0068	0.0532	0.0043	0.0524

Table 2. Evaluation of the geometric accuracy of the 3D models using 11 validation points.

0.9991	
0.9991	
0.9991	
	0.9991 0.9991 0.9991

Julian Cross GEOG 593 Department of Geography Portland State University 12/5/16

Structure from Motion Photogrammetry for 3D Reconstruction of Crater Glacier on Mount St. Helens, Washington, USA

Abstract:

The Crater Glacier on Mount St. Helens is rare compared to most glaciers in the coterminous United States in that it is advancing - at a rate approximately 10 cm per day (USGS, 2013). The May 1980 eruption of Mount St. Helens created a deep, north facing crater and consequently provides a perfect environment for this glacier to grow. Yearly measurement and mapping campaigns of the terminus of Crater Glacier are carried out by the USGS (Walder et al, 2009). This study presents a flexible, cost-effective and accurate method for measuring crater glaciers growth as an alternative to aerial lidar or ground GPS surveys. A UAV-based photo acquisition and 3D image reconstruction methodology was used to create 3D models of the glacier terminus. On October 11th, 2016, 237 photos were acquired using a quadcopter platform and GoPro HERO 3 camera. Photos were processed using a Structure from Motion workflow with Pix4D software. An accuracy assessment of the models, using 11 GPS validation points, shows that the most accurate model yielded a RMSE of 0.37 meters at 0.1-meter pixel size. Furthermore, glacier and topographical change was analyzed by comparing the new DEMs to a lidar derived DEM from 2009. This change detection showed the glacier at its terminus has a max depth of 60 meters. In future studies an improved ground control methodology could be used to increase the accuracy and number of both control and test points. Additionally, a time series of 3D models could allow observation of topographic change of glacier movement between summer seasons.

RESULTS

DISCUSSION

- In the future...
 - Improved sensor (camera)
 - Time series across multiple summer seasons
 - Larger survey area
 - Better ground control and validation data set

REFERENCES

USGS. "Time-series of dome and glacier growth at Mount St. Helens, Washington, 2004-2012". Online video clip. YouTube. 29 January 2013. 29 November 2016.

USGS. "Mount St. Helens' Runaway Glacier: A time-lapse video of Crater Glacier". Online video clip. YouTube. 9 October 2012. 29 November 2016.

Moore, R. D., S. W. Fleming, B. Menounos, et al. (2009) Hydrological Processes 23(1): 42.

Wilcox, A. C., A. A. Wade, and E. G. Evans (2013) Glacial Outburst Flooding, Bear Glacier, Kenai Fjords National Park, Alaska

Diefenbach, A. K., Crider, J. G., Schilling, S. P., & Dzurisin, D. (2012). Rapid, low-cost photogrammetry to monitor volcanic eruptions: an example from Mount St. Helens, Washington, USA. Bulletin of volcanology, 74(2), 579-587.

Lucieer, A., de Jong, S., & Turner, D. (2013). Mapping landslide displacements using Structure from Motion (SfM) and image correlation of multi-temporal UAV photography. Progress in Physical Geography, 0309133313515293.

Micheletti, N., Chandler, J. H., & Lane, S. N. (2015). Structure from motion (SFM) photogrammetry.

Patterson, M. C. L., Mulligan, A., Douglas, J., Robinson, J., Wardell, L., & Pallister, J. (2005). Volcano surveillance by ACR silver fox. Infotech@ Aerospace, 26-29.

Westoby, M. J., Glasser, N. F., Brasington, J., Hambrey, M., & Reynolds, J. M. (2011). 'Structure-from-Motion': a high resolution, low-cost photogrammetric tool for geoscience applications. In AGU Fall Meeting Abstracts (Vol. 1, p. 08).

Whitehead, K., & Hugenholtz, C. H. (2014). Remote sensing of the environment with small unmanned aircraft systems (UASs), part 1: A review of progress and challenges 1. Journal of Unmanned Vehicle Systems, 2(3), 69-85.

Ryan, J. C., Hubbard, A. L., Box, J. E., Todd, J., Christoffersen, P., Carr, J. R., ... & Snooke, N. A. (2015). UAV photogrammetry and structure from motion to assess calving dynamics at Store Glacier, a large outlet draining the Greenlandice sheet.