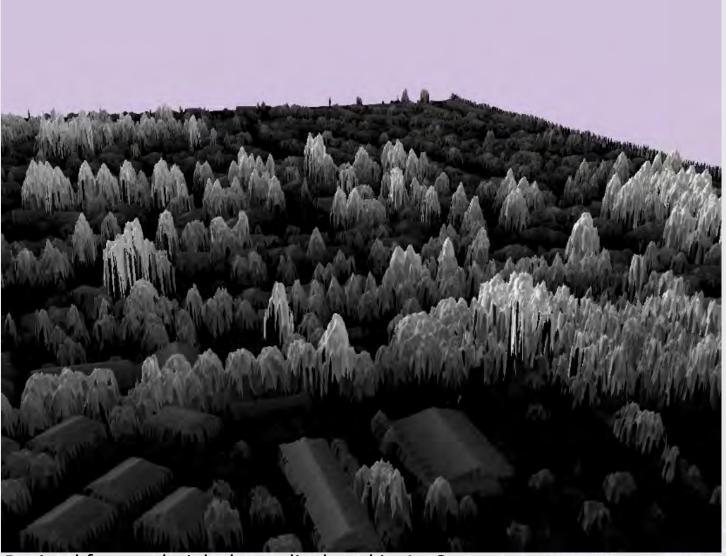

Tree Canopy Extraction and Classification In an Urban Environment


• What is the potential role for LiDAR data in characterizing trees, as a resource in monitoring trees in an urban environment?

• Can manipulation of LiDAR data, using GIS tools and methods to characterize point cloud data, further analysis of elevation relationships to group, parse, and evaluate data?

- .las to LAS Dataset
- Filter LAS Dataset point cloud
- Ground Returns (average) = DEM
- First Returns (maximum) = DSM
- "LAS Dataset to Raster" tool
- DSM DEM = Feature Height

Methods Elevation Models and Feature Height

Derived feature height layer displayed in ArcScene

Methods Vegetation

Feature Extraction

- High Resolution 4 band aerial image
- Load band 1 & band 4
- Raster calculator

float (band 4 - band 1) / float (band 4 + band 1) = NDVI

 Determine threshold of NDVI values for vegetation vs nonvegetation

Near Infrared High-Res Ortho Image

Source: LISGS 2007-2008

Vegetation Layer Derrived from NDVI

Source: USGS 2007-2008

Methods Vegetation

Vegetation Feature Extraction

- Use set threshold with Conditional tool to extract vegetation layer
- Assign value of 1 to vegetation, and 0 to non-vegetation

 Raster Calculator
Vegetation Layer * Feature Height = Vegetation Only Feature Height

Methods Tree

Canopy Delineation

- Smoothed vegetation layer using Focal Statistics
- Creates a more continuous surface

Smoothed Vegetation

Source: USGS 2007-2008

Methods Tree Canopy Delineation

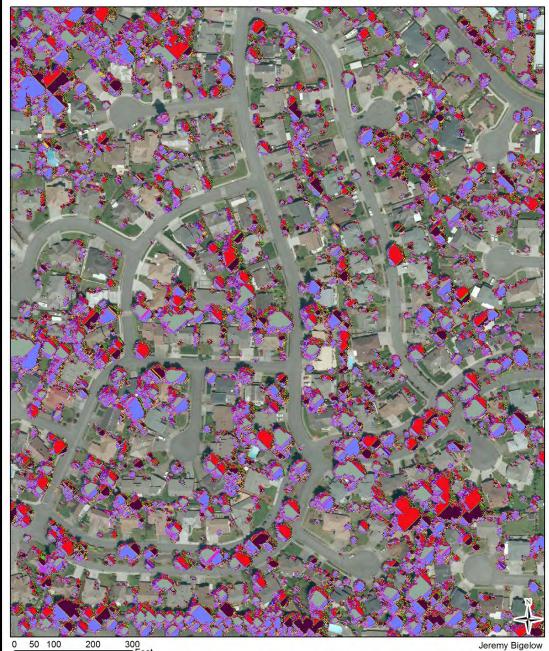
- Low lying vegetation was removed
- Tree only layer was inverted

Vegetation Over 10 Feet Legend Vegetaton Height Value 126.8 ft 10 ft

0 50 100 200 300 Feet Source: USGS 2007-2008

Methods Tree Canopy Delineation

- Found Sinks (tree tops)
- Tree tops became pour points
- Fill sinks



Methods Tree Canopy

Delineation

- Flow direction
- Flow accumulation

Flow Dicrection

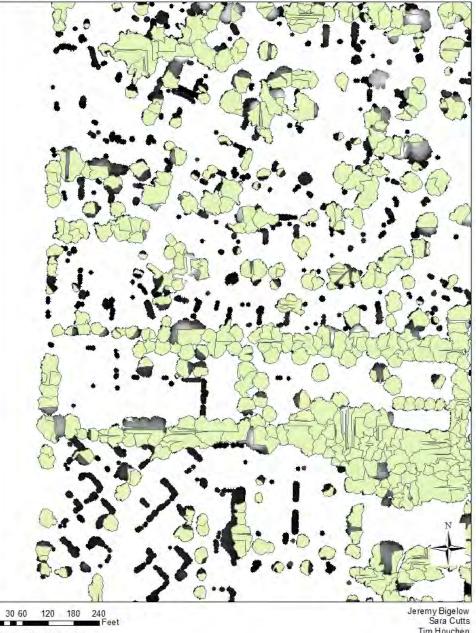
Source: USGS 2007-2008

Methods Tree Canopy Delineation

- Snap to Pour Points
- Snapped Pour Points and Flow Direction used to create "watersheds"

Tree Crown "Watersheds"

Source: USGS 2007-2008

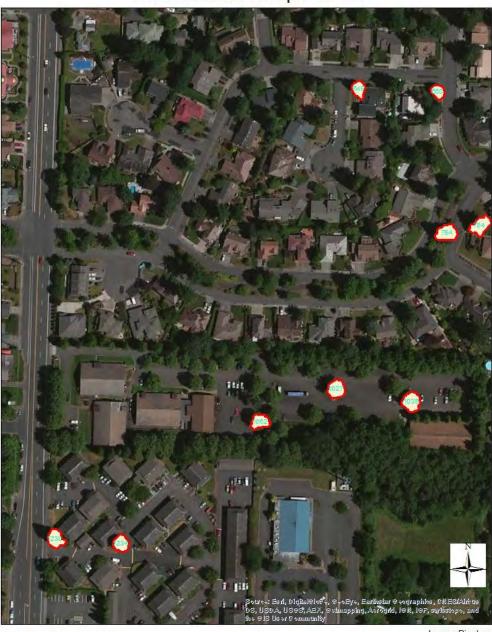

- Tree Crowns Converted to polygons
- Counted Polygons
- Compared to tree peak count

Methods Geometric Tree

Classification

- Clipped Feature Heights raster to Snap Pour Points polygon layer
- Removed non-tree vegetation
- Executed Spatial Join of remaining points to polygons
- Selected Sample

Clip Vegetation Feature Heights to Snap Pour Points Polygons

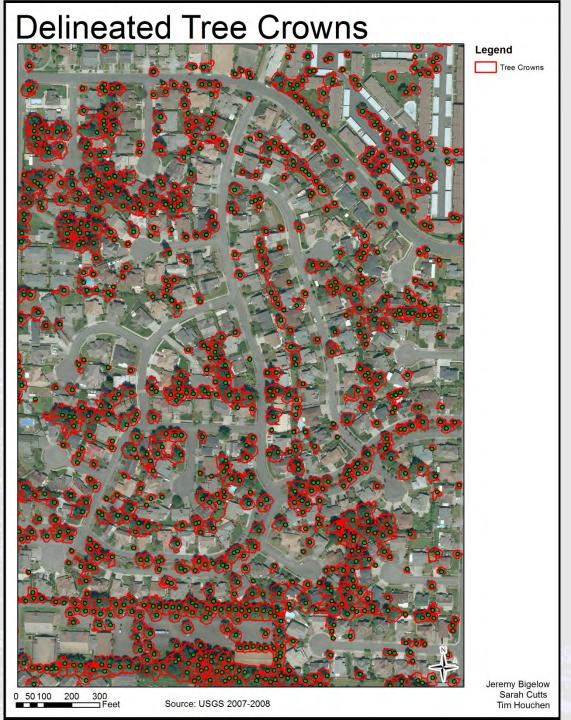


Methods

Geometric Tree Classification

- Calculated Vertical point Distribution
- Delineated base to top crown height
- Allocated points to deciles, etc. (cumulative)
- Calculated polygon geometry

Classification Sample Trees



0 30 60 120 180 240 Feet Source USGS 2007-08

Height

Number of trees: 1121 **Tallest Tree Feature:** 126.8 Feet **Mean Tree Height:** 44.8 Feet **Median Tree Height:** 57.4 feet **Mode Tree Height:** 22 feet **Standard Deviation:** 22.7 feet

Differences in LiDAR point density: Inadequate to distinguish coniferous from deciduous trees

	Deciduous Average	Conifer Average	Student' s t p- value
Top 10 pct.	0.1689	0.2780	0.7572
Top 20 pct.	0.2784	0.3928	0.9761
Top 25 pct.	0.3642	0.3814	0.6352
Top 30 pct.	0.4313	0.3759	0.4180
Top Third	0.4693	0.4365	0.5266
Top 40 pct.	0.5537	0.4527	0.3666

				Height to Area Ratio		
R	esult			Tree	Coniferous	Deciduous
Results Classification			cation	649	0.0668	
				650		0.0239
				669	0.0665	
• Differences in Height to Area Ratios Significant, even in this small sample				784	0.0586	
			all	794	0.0554	
				1027		0.0310
Sumple			1039		0.0316	
Coniferous/ Deciduous Ratio 1.841		Student's t p- value		1062		0.0403
				1230	0.0587	
	1.8417	7 0.00001923		1234		0.0324
				1368		0.0403
				Average	0.0612	0.0332

Recommendations

- **Tree Climbing Algorithm** A treetop detection algorithm to determine highest points of individual trees
- **Donut Expanding and Sliding Method** A tree crown delineation algorithm used to determine estimated tree crown size and shape
- Leaf Off Conditions Collect LiDAR data at leaf off and classify based on point intensity
- **Discriminant Analysis** -- A generalized classification tool, permits analyzing several attributes depending on species, canopy type, and other factors

Brandtberg, T., (1999). Automatic Individual Tree-based Analysis of High Spatial Resolution Remotely Sensed Data.Ph.D. dissertation, Acta Universitatis, Agriculutae Sueciae, Silvestria 118, Swedish University of Agricultural Sciences, Uppsala, Sweden.

Chen, Q., Baldocchi, D., Gong, P., & Kelly, M. (2006). Isolating Individual Trees in a Savanna Woodland Using Small Footprint Lidar Data. Photogrammetric Engineering & Remote Sensing Photogramm Eng Remote Sensing, 923-932.

Kaartinen, H., et al., An International Comparison of Individual Tree Detection and Extraction Using Airborne Laser Scanning, Remote Sens. 2012, 4, 950-974; doi:10.3390/rs4040950.

Kim, Sooyoung, T. Hinckley, D. Briggs, Classifying Tree species Using Structure and Spectral Data from LiDAR, ASPRS/MAPPS 2009 Specialty Conference, 2009, San Antonio, Texas

Koch, B., Heyder, U., & Weinacker, H. (2006). Detection of Individual Tree Crowns in Airborne Lidar Data. Photogrammetric Engineering & Remote Sensing Photogramm Eng Remote Sensing, 357-363.

Kwak, D., Lee, W., Lee, J., Biging, G., & Gong, P. (2007). Detection of individual trees and estimation of tree height using LiDAR data. J For Res Journal of Forest Research, (12), 425-434.

Luong, K. (2014). Tree Crown Delineation Using Watershed Techniques and Forest Metrics from NEON LiDAR Data American Geophysical Union, Fall Meeting 2014, abstract #B51C-0047.

Persson, Å., J. Holmgren, & U. Södermann, 2002. Detecting and measuring individual trees using an airborne laser scanner, Photogrammetric. Engineering & Remote Sensing, 68(9):925–932.

Suárez, J., Ontiveros, C., Smith, S., & Snape, S. (2005). Use of airborne LiDAR and aerial photography in the estimation of individual tree heights in forestry. Computers & Geosciences, 31(2), 253-262

Tyrväinen, L. (n.d.). Economic valuation of urban forest benefits in Finland. Journal of Environmental Management, 75-92.

Zhang, Calyun. Qiu, Fang. *Mapping Individual Tree Species in an Urban Froest Using Airborne Lidar Data and Hyperspectral Imagery.*

