DETECTING RIPARIAN VEGETATION CHANGE USING LIDAR

WILLIAM SERCOMBE | ALEX THOMAS | GEOG 593

PRESENTATION OVERVIEW

- Background Information
 - Research Question
 - Study Area
- Methods
 - Pre- Processing in ArcMap
 - Processing in Fusion
- Analysis
 - Raster Analysis in ArcMap
 - Statistical Testing

RESEARCH QUESTION

BACKGROUND INFORMATION

PRE -PROCESSING FUSION PROCESSING

ANALYSIS

BACKGROUND INFORMATION

PRE -

PROCESSING

FUSION PROCESSING Can meaningful vegetation changes be derived between two LiDAR flight missions?

 $H_0: \ \mu_1 = \mu_2$ $H_1: \ \mu_1 \neq \mu_2$

Where:

- μ_1 = vegetation height difference
- μ_2 = building height difference

- Develop canopy height analysis workflow
 - Learn FUSION and ArcMap canopy metric best practices
- Derive statistical products from LiDAR data
- Compare means / variation between samples using t-test

ANALYSIS

STUDY AREA

BACKGROUND INFORMATION

PRE -

PROCESSING

FUSION PROCESSING

BACKGROUND INFORMATION

PRE -

PROCESSING

FUSION PROCESSING

- Riparian Zone in
 Union County
- Grande Ronde River Basin
- Currently being assessed and managed by Bureau of Reclamation.

DATA

•

- Point Density: 7.23 points / m² 0.70 points / ft²
- Catherine Creek (September 29, 2011)
 - Point Density: 10.66 points / m² 0.99 points / ft²

Factors to consider:

- Growth or effects of reclamation
- Seasonal change leaf on/leaf off
- Disparity in sampling density

ORTHOPHOTO MOSAIC

Mosaic to New Raster Tool

BACKGROUND INFORMATION

PRE -PROCESSING

FUSION PROCESSING

ANALYSIS

PRE -PROCESSING

FUSION PROCESSING

ANALYSIS

>>> from arcpy.sa import *
... outputfile = Con(IsNull("point2ras"),
FocalStatistics("point2ras", NbrRectangle(3, 3,
"CELL"), "MEAN", "DATA"), "point2ras")

BACKGROUND INFORMATION

PRE -PROCESSING

•

FUSION PROCESSING

ANALYSIS

FUSION SOFTWARE

- LiDAR viewing and analysis software suite.
- Developed by US Forest Service at Pacific Northwest Research Station
- Uses a GUI for viewing data models and a command line interface for executing analysis functions.

USING THE COMMAND LINE IN FUSION

- Must first add Fusion.exe to your PC's system environment variables in order to use its command line utilities.
- Batch files (.bat) are created in
 Notepad to execute operations,
 following a syntax specific to each
 utility.
- In this example, the *canopymodel* utility is used to generate a Canopy Height Model, by using the bare earth DEM to normalize the LAS point cloud.

BACKGROUND INFORMATION

PRE -PROCESSING

FUSION PROCESSING

ANALYSIS

BUILDING FEATURE HEIGHT MODEL

RESULTS (CONT'D)

 $H_0: \mu_1 = \mu_2$

BACKGROUND INFORMATION

PRE -PROCESSING

Not enough evidence to conclude that variation in vegetation heights is statistically significant.

			Levene's Test for Equality of Variances			Heat for Equality of Means						
SING				Sig	t d	[Mean Difference	Std. Error Difference	95% Confidence Interval of the Difference		
						df.	Sig (2-tailed)			Lower	Upper	
	Heights	Equal variances assumed	2097.051	000	- 295	832690	814	019624391	0833799182	-183046017	1437972358	
		Equal variances not assumed			-300	14705.092	576	019624391	0350499948	- 088326773	.0490779915	

Failed to reject the null hypothesis.

