The Fault Line Vineyards of Abacela Winery

How terrain variation allows a single vineyard in southern Oregon to grow sixteen unique cultivars of *vitis vinifera*

Objectives

- Investigate the influence of terrain variation on vineyard productivity at Fault Line Vineyard through the lens of solar radiation accumulation.
- Use area solar radiation as a metric to try and explain how sixteen unique cultivars of *Vitis Vinifera* can be grown at a single site.

Vineyard Location

• Fault Line Vineyards is located in Douglas County, Oregon in the Umpqua Valley American Viticultural Area (AVA).

Vineyard Blocks

- Vineyard is the sole provider of fruit for Abacela Winery.
- First plantings of vitis vinifera in 1994.
- Seventy-six acres of grapevines online and in production today.
- Vineyard divided into three sub-vineyards and twenty-three vineyard blocks

Varietals Grown

• Sixteen varietals of grapes grown at Fault Line Vineyard.

<u>Native</u>

Growing Regions

- None of the varietals grown at Fault Line Vineyards are native to Oregon.
- All cultivars are native to European growing regions.

Varietal	Native Region	Country	
Tempranilla (TF)	Rioja	Spain	
Syrah (SY)	Rhone River Valley	France	
Malbec (MAL)	Bordeaux	France	
Cabernet Sauvignon (CS)	Bordeaux	France	
Garnacha (GN)	Rioja	Spain	
Graciano (GR)	Rioja	Spain	
Tanat (TAN)	Madican	France	
Tinta Amerola (TAM)	Douro River Valley	Portugal Portugal	
Bestardo (BA)	Douro River Valley		
Tourisa Nacional (TN)	Dours River Valley	Portugal	
Dolcetto (DOL)	Pledmont	Italy	
Petit Verdat (PV)	Bordeaux	France	
Albating (AL)	Galicia	Spain.	
Mogettier (VI)	Rhone River Valley	France	
Muscat (MU)	Piedmont	Italy	

Data Collection

- Collection of vineyard data done in the field using Trimble Juno 3 Series GNSS (Global Navigation Satellite System) device.
- Data used to represent shape, size, orientation, and varietal composition of each vineyard block.

DEM Surface

 Constructed a Digital Elevation Model for Fault Line Vineyards in both 2D & 3D.

Surface Models

 Used the Fault Line Vineyard DEM as an input surface, constructed three terrain models representing surface slope, terrain aspect & elevation.

Area Solar Radiation

 Used the Fault Line Vineyards DEM as an input surface, constructed a terrain model representing area solar radiation accumulation across the vineyard.

Zonal Statistics

Part I

- Computed zonal statistics per vineyard block for all three terrain feature surfaces, as well as the area solar radiation surface.
- Analyzed results in order to identify trends and/or relationships between terrain features and solar radiation accumulation.

Vineyard Block		Aug. Stope (Stephen)	(Feet)	Avg. Selar Radiation (Nas/Mourt	Varietiels
Cobbbeuture HIR Vineyard	1/9	12	965.2	6,568.6	
Grand Mil.	1W	10.7	706.9	6,879.3	TP, MILL TANK TANK GALL
Northwell Block	166	353	772.4	£265.4	BG.
History States	W.	9.2	505.4	6.066-1	19
Ford Work	1/59	3.6	403.2	1,000.5	19
South False	1	113	796.6	63%3	16,7%
South Stope	1	73	841.1	6,276 A	Sr, TP
North Steet	16	3.1	ENCH	USEE	ACTP
Mind Machine Book	1	11	671.8	6.879.6 ·	AL.
Crise Brank	5W	81	636.7	6363.7	DK TE BA AL
Angly Work	SW	17.6	701.3	CHES	0
Fierra Ridge	1	18	626.6	5,076.6	19,754
Expension Book	1738	4.4	943.7	5,065 A	18
Angra Bleit	1716	33	626.6	5363	A.
Can's Rock Vineyard	100	1.13	ADC S	CHIA	15.00
Burthwell Black	3	8.6	SHA	63633	MAL.
Auger Breit	1716	111	406.3	1270	VLFV.TF, TF, DCL
Carry Black	1	11	612.8	£33(3)	NEE
SOUTHWEST BOOK	SW	13	176.4	6,245.0	16
Rectly Cred	3/98	84	104.3	63623	GR. GR. AL. VI
Southeast Block	1	43.	100.7	6,966.3	W. SY, TH, MAG.
Davin Kidge Vineyard	1/9	11	1861	1980	
Ract Will	3	4.0	1103	6,963.3	DOMER, THE RESIDENCE
Bert Foot	SW Fm	1.6	187.6	6,065.1	TV, TAN, GN, BA
THERMA	SW	11	5763	63653	R.
Real Room	W/1	19	DES	ESET F	ACTE NO. NO. TO

European Models

- Constructed surface models for each European growing region.
- Calculated ambient area solar radiation accumulation for each region.

Zonal Statistics Part II

- Calculated zonal statistics for area solar radiation accumulation per *vitis vinifera* varietal at Fault Line Vineyard.
- Compared with area solar radiation score of corresponding native growing region.

Conclusions

- Terrain variation plays a prominent role in the accumulation of solar energy throughout Fault Line Vineyards.
- Surface orientation (aspect) plays less significant of a role in dispersal of solar energy across vineyard surface.
- Solar radiation accumulated at Fault Line Vineyards on the 23rd of June, 2014 was greater than the baseline levels received in each European growing regions.

<u>Acknowledgements</u>

- Not sure what to make of Angle Block.
- Solar radiation is a useful environmental growth factor for an investigation into vineyard productivity. However, it is but a definitive one. Other factors that should be taken into consideration in order to produce a definitive vineyard analysis are:
 - Heat accumulation (Growing Degree Days)
 - Diurnal temperature variation
 - Humidity levels
 - Precipitation accumulation (rain, groundwater, & irrigation)
 - Soil content
 - Winter weather conditions