Initial Reservoir Evolution

Following the Removal of Marmot Dam on the Sandy River, Oregon

> Mackenzie Keith Geography 593 Digital Terrain Analysis December 8, 2011

Outline

- Background
- Research goals
- Study area
- Photogrammetric model construction methods
- Surface construction and volume calculation methods
- Results
- Discussion and Conclusions

Marmot Dam and its Removal

- Constructed in 1913
- 14.3 m-tall dam
- 3 km-long reservoir
- Removed October 2007
- "Blow and Go"

- Few other studies monitoring reservoir response
- 125,000 m³ of sediment eroded in the 1st two weeks

Research Goals

- Characterize the changes in reservoir evolution in the first few days following removal
- Measure the erosional volume change in the lower reservoir and identify area of erosion

Research Objectives

1-Create 2 3D models from terrestrial post-removal photographs

2-Create a DTM from the 3D models and compare it with pre-removal LiDAR

3-Use those same DTMs identify spatial distribution of erosion

4-Compare results to a USGS survey collected 2 weeks following dam removal

Previous Research

- Initial incision and widening rates developed using timelapse photography
- Long-term erosion calculated through comparison of preremoval LiDAR to post-removal data sets

Photogrammetric Methods

- Time-lapse photography
- PhotoModeler 5.2 software
 - Uses collinear equations to solve the intersection of light rays for a 3D point
 - Outputs coordinates
- Internal controls
 - Focal length, lens distortion, principal point
- External controls
- Tie points
- Point tagging

Surface Creation Methods

- Imported 3D point array to ArcGIS
- Created a TIN for October 20 (A) and October 23 (B)
- Converted to raster
- Same methods for field survey, November 5

Surface Creation Methods

- 2007 LiDAR collected preremoval
- Converted to common projection and vertical units
- All surfaces covered different spatial extents
- Re-sampled to similar cell size, clipped to coincident area (10 % of 2 week erosion area), and snapped to LiDAR surface

Volume Calculation and Erosion Map

- Cut/Fill tool
- Raster Calculator
 - LiDAR to October 20 surface
 - LiDAR to October 23 surface
 - LiDAR to November 5 surface

Erosion Volume Results			
Date	Volume (m³)	Cumulative Volume (m ³)	Percent of Total November 5 Erosion
October 20	39,622	39,622	32
October 23	15,855	55,477	44
November 5	-316	55,161	44

Are results valid? Field observations and other terrain analyses show rapid erosion in the early hours and days following dam breach October 20th accounts 32 % of total 2 week erosion volume October 23 accounts for an additional 12 % Results are reasonable considering the distribution of the impoundment and timing of flows

Sources of Error

- Error could stem from a variety of sources
 - Coarse resolution of field-based surveys
 - Variation in river discharge
 - Deposition could be sourced from outside study area
 - Multiple stages of processing

Quality of Photogrammetry

- 3D photogrammetric models can provide sturdy foundation for addressing response
- Results are close to what should be expected
- Improvements and future work
 - Increased density of points possibly with updated software
 - More expansive camera network
 - Define geomorphic surfaces for more diverse results

Conclusions

- 1 day
 - ~40,000 m³ eroded
 - Downstream portion of analysis window near the central reservoir
- 3 days
 - ~55,000 m³ eroded
 - Erosion spread laterally across impoundment and longitudinally upstream
- Results are consistent with field and photo observations
- Photography can be used effectively to address response to dam removal at certain spatial and temporal scales

