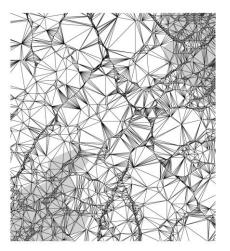

TIN & Surface Interpolation

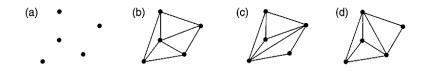


Triangulated Irregular Network (TIN)

- Node (x, y, z)
- Edge
- Triangles
- Topology
 - The triangle number
 - The numbers of each adjacent triangle
 - The three nodes defining the triangle
 - The x, y coordinates of each node
 - The surface z value of each node
 - The edge type of each triangle edge (hard or soft)

Conversions between Surface Models

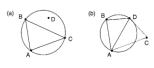
To	Point	Triangle	Grid
From			
Point	Spatial interpolation	TIN generation	Spatial interpolation, indirect interpolation
Triangle	Edge points	Edit TIN	Linear / curved surface interpolation
Grid	Nearest neighbor, linear/cubic interpolation	TIN generation	Nearest neighbor, linear/cubic interpolation



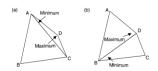
Static vs. Dynamic Triangulation

- Static: all data are used in a singlepass process
- Dynamic: data are used in a multiplepass process (i.e., subsequent editing of a TIN)

Ways of Forming Triangles


Basic requirements:

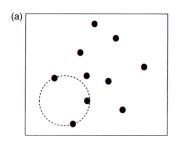
- 1. Unique formation
- 2. Equilateral triangles
- 3. Minimal edge length

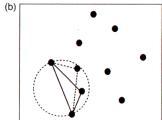

TIN Formation

 Delaunay criterion (empty circumcircle principle): the circumscribing circle of any triangle contains no other points of data except the three defining it.

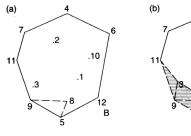
 Local equiangularity (max-min angle principle): minimizing the range of interior angles in the two triangles that form a convex quadrilateral (through Lawson's Local Opt. Procedure).

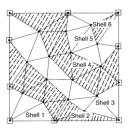
- Minimum sum-distance principle:
- Minimum circumscribing circle radius:
- ...


Static Triangulation of Points


Algorithm:

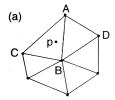
- 1. Select an initial point
- 2. Search for the first edge
- 3. Form the first triangle (nearest point to the edge)
- 4. Search for a subsequent edge
- 5. Form a subsequent triangle
- 6. Repeat 4, 5 until all points become nodes of triangles

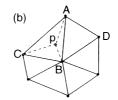

Searching for a Node Point

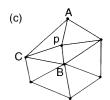


Searching for a Subsequent Edge

Convex hull algorithm

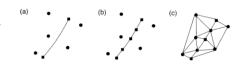


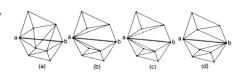

Imaginary bnd algorithm



Dynamic Triangulation of Points

Bowyer-Watson algorithm

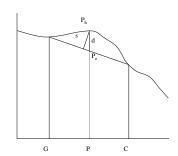




Constrained Triangulation

- Random points and featurespecific points of a DTM
- •Approaches:
 - Point densification of features

Constrained Delaunay Triangulation

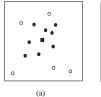

Triangulation from Contours

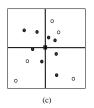
- Point densification of contours
- Contours as soft breaklines

Triangulation from DEM

- · Selection of significant points from DEM
 - Very Important Points (VIP)
 - Maximum z-tolerance (d)
- Triangulation from VIP

Spatial Interpolation


- Methods to construct the surface model
- Global vs. local
- Exact vs. best fit
- Information lost at the sampling stage can never be reconstructed (?)


Local Method

Neighbors

Distribution of control points Extent of spatial autocorrelation

(a) find the closest points to the point to be estimated, (b) find points within a radius, and (c) find points within each of the four quadrants.

Distance Weighted Interpolation

- •Neighbor points with observations
- Weighting functions

$$z = \frac{\sum_{1}^{s} z_{i} \frac{1}{d_{i}^{k}}}{\sum_{1}^{s} \frac{1}{d_{i}^{k}}}$$

Types of Local Spatial Interpolation

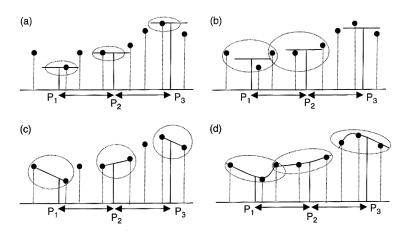


Figure 6.11 Different types of moving surfaces for interpolation: (a) nearest; (b) averaging; (c) linear surface; and (d) curved surface.

Kriging

$$\hat{Z}(\mathbf{s}_0) = \sum_{i=1}^{N} \lambda_i Z(\mathbf{s}_i)$$

DEM Resampling

- Down-scale (Fine to coarse)
 - Treat output grid as polygons
 - Data aggregation
- Up-scale (Coarse to fine)
 - Treat DEM as point data
 - Interpolation