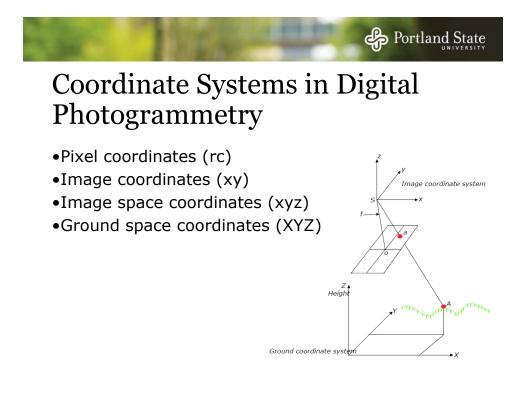
Photogrammetry: DTM Extraction & Editing

Digital Photogrammetry:

Portland State

Softcopy Photogrammetric Systems

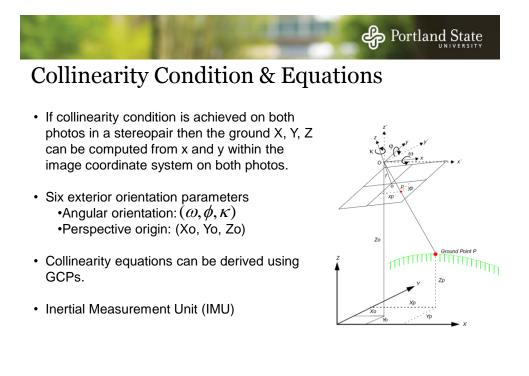

- Scanned stereopair photos
- Interior and exterior orientations (Aerial Triangulation)
 - Camera & photo parameters
 - Flight parameters
 - GCPs
 - Tie points (image matching algorithms)
- Generate DEM and orthophotos

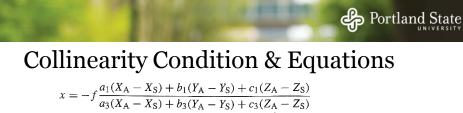
What DPI should I use?

Dots per inch (DPI) e.g., 200 DPI = 200 dots/inch = 200 dots/2.54 cm = 2.54/200 cm/dot = 0.0127 cm/dot = 127 microns/dot e.g., scan a 1:4000 photo at 200 DPI 127 microns/dot (map) = 127 x 4000 microns/dot (ground) = 508000 microns/dot

= 50.8 cm/dot = 0.5 meters/dot

Interior Orientation


- Interior orientation defines the internal geometry of a camera or sensor as it existed at the time of data capture.
- It defines image space coordinates based on pixel and image coordinates and camera parameters (e.g., f and lens distortion model).
 - Principal point & fiducial marks
 - Focal length & lens distortion
 - No GCPs


Sensor Interior Orientation Ex		
Image File Name:		ОК
image File Name:	photo_number_1002.img Attach View Image Edit All Images	Previous
Block Model Type:	Frame Camera	Next
Sensor Name:	142818-01 Edit Camera New Camera	Cancel
Define a new camera		
		lle.
🎵 Frame Camera Frame Ec	titor (avs01m02.img)	
Sensor Interior Orientation Ex	xterior Information	
Frame Camera Frame Ec Sensor Interior Drientation Es Fiducial Orientation:	vterior Information	solved DK
$\begin{array}{c c} Sensor & Interior Orientation & Es\\ \hline \\ Fiducial Orientation: \\ \hline \hline \\ \hline $	viterior Information	Solve
Sensor Interior Drientation Es Fiducial Drientation:	vterior (Information) Viewer Fiducial Locator: Viewer Fiducial Locator: Viewer Fiducial Locator: Viewer Fiducial Locator: Apply Reset	solved DK Previous

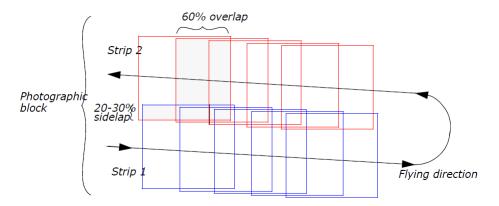
Exterior Orientation

- Exterior orientation defines the position and angular orientation associated with the camera to achieve collinearity condition.
- It defines ground space coordinates based on image space coordinates and flight information (e.g., flying altitude and attitude).

 $y = -f \frac{a_2(X_A - X_S) + b_2(Y_A - Y_S) + c_2(Z_A - Z_S)}{a_3(X_A - X_S) + b_3(Y_A - Y_S) + c_3(Z_A - Z_S)}$

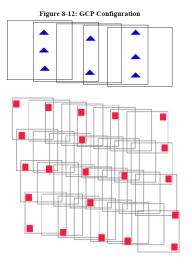
x, y: coordinates of a point on image space X_A , Y_A , Z_A : ground space coordinates of the point X_S , Y_S , Z_S : coordinates of the perspective center (lens) f: focal length $a_1 = \cos\phi \cos\kappa + \sin\phi \sin\omega \sin\kappa$ $b_1 = \cos\phi \sin\kappa + \sin\phi \sin\omega \cos\kappa$

 $c_1 = \cos \phi \sin \kappa + \sin \phi \sin \omega \cos \kappa$ $c_1 = \sin \phi \cos \omega$ $a_2 = -\cos \omega \sin \kappa$ $b_2 = \cos \omega \cos \kappa$ $c_2 = \sin \omega$ $a_3 = \sin \phi \cos \kappa + \cos \phi \sin \omega \sin \kappa$ $b_3 = \sin \phi \sin \kappa - \cos \phi \sin \omega \cos \kappa$ $c_3 = \cos \phi \cos \omega$


Redundancy (DF) of Forming Collinearity Eqs.

Degree of Freedom (DF) = # Observation Eqs - # Unknown

- 1 GCP provides 2 obser. eqs. on one image
- 1 tie point provides 2 obser. eqs. on one image
- 1 photo has 6 unknown (X, Y, Z, ω , ρ , κ)
- 1 tie point has 3 unknown (X, Y, Z)


Bundle Block Triangulation

GCPs: How many do you need?

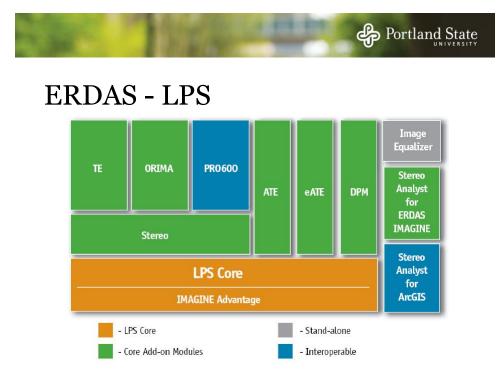
3 for single frame.

- 2 on every third image of a strip
- 1 on every third image of a block

LPS Block Files (.blk)

- A block must be created to to performing any photogrammetric tasks in LPS
- A block contains information including:
 - Projection, spheroid, and datum information
 - Imagery used within a project
 - Camera or sensor model information associated with the imagery
 - GCPs and their measured image positions
 - geometric relationships between the imagery in a project and the ground

Portland State


Photogrammetry vs. Conventional Geometric Correction

Block Triangulation Photogrammetry	Single Frame Orthorectification (Reverse) Photogrammetry	Geometric Correction
Bundle block adjustment (Relies on image models, GCPs, and block triangulation)	Single frame orthorectification (relies on DEM, GCPs, and image models)	Single photo adjustment (Relies on GCPs and polynomial equations)
A minimum of 3 GCPs to achieve high accuracy. GCPs can be shared by the entire block of photos.	A minimum of 3 GCPs to achieve high accuracy	More GCPs are required to achieve satisfactory accuracy. GCPS are not shared.
Minimizes errors for the entire block of photos. Ideal for photo-mosaicking.	Single photo resection - minimizes GCP errors within a single photo.	Minimizes errors within a single photo.
Allows the correction of relief displacement and the generation of DEM when stereopairs are used.	Requires DEM to generate orthophotos	Unable to do orthorectification

Leica Photogrammetry Suite (LPS)

- Leica Geosystems
- Based on ERDAS Imagine
- LPS (Version 10.1)
 - Project Manager (PM)
 - LPS Automatic Terrain Extraction (ATE)
 - Project Manager & ATE were called OrthoBASE in Version 8.X
 - LPS Terrain Editor (TE)
- Imagine VirtualGIS

