Multibeam Bathymetry

James Bradd Digital Terrain Analysis 12/9/2010

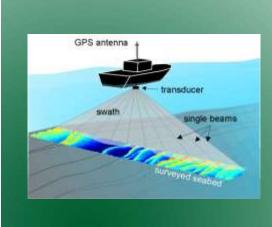
Research Question

How much kelp are we missing?

Overview of Methods

- Create DEM from multibeam echosounding
- Derive slope and aspect from DEM
- Include other datasets
 - Kelp Coverage (2004)
 - Grain Size

Software Used


- Virtual Box
- Poseidon Linux
- MBSystem
- ArcGis 10

Multibeam Bathymetry

- Developed to aid in underwater navigation
- Few Major Manufacturers around the world
- No data format standardizations
- Similar to surface returns of LiDAR (no "cloud")

Multibeam Bathymetry

- Sends out multiple echo beams
- Records return time, transducer elevation, pitch etc.
- Stores in raw format

Multibeam Processing

- UNIX based suite "MBSystem" only legitimate choice for free/casual users
 - Command Line Based
 - Assign MB format to raw data
 - Read information on that data
 - Aggregate into data lists
 - Grid data

Multibeam Proccessing

- Mbdatalist: Create lists of layers and ancillary files
- MBM_plot: Create shell script to plot to view your data
- MBM_grd: Create shell script to grid your data
- MBM_grd2arc: Convert grids to Arc ASCII DEM
- Mblist: prints X,Y,Z in tab delimited format

Multibeam Processing Alternative

- Mbdatalist to aggregate data
- Mblist output sent to text file
- Import ASCII 3d to ArcMap
- Point to Raster

Multibeam

- High accuracy compared to traditional sounding
- Swath allows more land to be surveyed by single boat
- Provide detail necessary for advanced modeling

- Difficult to process
- Expensive to capture
- Storage Intensive
- Little documentation
- No support from major programs
- Knowledge restricted to industry

Multibeam Problems Ecountered

• File size

- Programs wouldn't run
- Data wouldn't display
 - Processing took an immense amount of time

Multibeam Problems Encountered

• Time Consuming

- Without investing major effort into scripting, it is a labor intensive process

Multibeam Problems Encountered

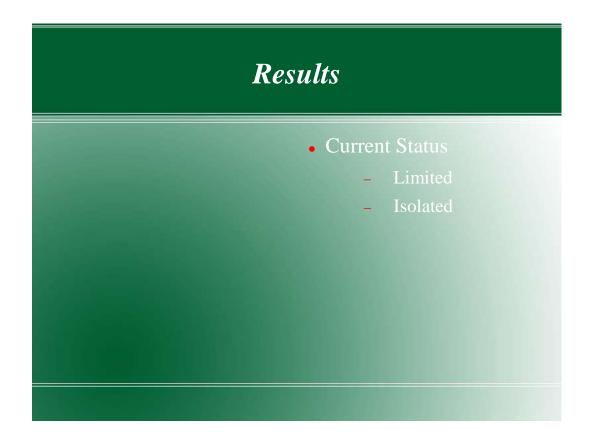
• Poor documentation

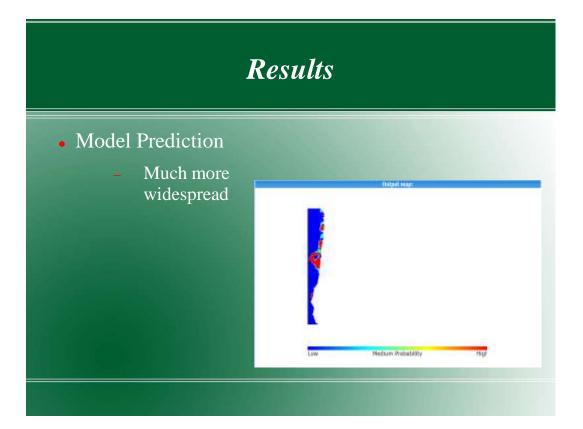
- A decent guide is provided for optimal operation of Mbsystem
 - No support available
 - No FAQ regarding error messages

Solutions

- NOAA used the same data and created DEM's for the west coast
- Acquired the existing DEM's
 - Used the same proccess I was using to create mine according to metadata

Methods


• Acquire datasets


- Current Kelp Distribution
- DEM (to derive slope and aspect)
 - Grain Size (could be a limiting factor)

Methods

- Import/derive
- Clip to Shape
- Prepare for Open Modeller
- Create "Occurance File"

- Select Algorithm
 - Generic species distribution
 - Few inputs
 - Default Settings

Results

 Model Predictom compared to existing in adjacent states

Future Studies

- Use DEM's derived from multibeam to identify nutrient sinks
- Combine with current data to predict dead zones from prolonged upwelling
- Press ESRI to adapt the LiDAR tools for use with specific multibeam file types
- Add more inputs to the model and refine further

Conclusion

- Exploratory Experiment Accomplished:
 - Explored multibeam technology
 - Processed with the tools I had
 - Combine and plot many files together
 - Used derived datasets for use in environmental modeling
 - Provided slight indication that there are significant amounts of kelp forest not present off the Oregon Coast

Sources

- MBSystem Cookbook
- ESRI Documentation
- OpenModeller Documentation
- Duh, Geoffery Digital Terrain Analysis, 2010 Portland State University
- NOAA NGS