A Detailed Examination of DTM Creation Methods and Sources

Adam Mosbrucker & Melinda Lamb Geography 593: Dec. 2nd, 2010

Study Area Overview

Mt. St. Helens -active volcano • many eruptions in the past 30 •Major eruption in May 1980

Major eruption released 3.8 billion yds of material in a landslide. Toutle River was washed out.

Toutle is a tributary to the Columbia River, a major shipping route for the PNW

Purpose / Application

Extensive of DTM/survey data surrounding Mt. St. Helens has been gathered

DTMs used to derive:

- volume calculation
- channel slope
- channel geometry

Often input into hydrologic, hydraulic, and sediment erosion & transport models

In order to predict long-term (100 yrs) sediment loading

In order to make sediment decisions on the lower Cowlitz River.

Datasets: DTM & GCPs

	2010 GCP	2009 GCP	2007 GCP	1997 GCP	1987 GCP	1983 GCP
1983 topo map						
1987 Vert. Aerial Photogrammetry						
1999 Vert. Aerial Photogrammetry						
2003 ALS 2003 (delivered)						
2003 ALS 2003 (reprocessed)						
2007 ALS (delivered)						
2009 ALS (delivered)						
2009 ALS (reprocessed)						
2010 TLS (processed)						
2010 Oblq. Aerial Photogrammetry						
2010 Oblq. Ground Photogrammetry						
1' NED						
1/3' NED						
1/9' NED ('03 LiDAR-based)						

COMPLETED NOT YET COMPLETED

Ground Control Points (GCPs)

GCP Dataset: DGPS survey

Date:

8-3-2010

Stated accuracy: 10-15 cm

Spatial reference:

WGS 1984 geographic WGS 1984 height above ellipsoid

Processing methods:

Differentially corrected and exported in needed coordinate systems using Trimble Pathfinder Office software.

Ground Control Points (GCPs)

GCP Dataset: RTK DGPS survey

Date:

10-20-2009

Stated accuracy: 1-5 cm

Spatial reference:

NAD 1983 UTM Zone 10 North NAVD 1988 Geoid 2009

Processing methods:

Created feature class from delivered Excel file and reprojected as needed. Converted Geoid09 to Geoid03 vertical datum as needed.

DTM Dataset: 1987 Photogrammetry

1987
N/A
3 meter

Spatial reference:

NAD 1983 WA State Plane South Vertical N/A

Processing methods:

As delivered GRID. Creation methods were vertical aerial photogrammetry to contour to DEM.

DTM Dataset: 1999 Photogrammetry

Date: 9-3-1999 Stated accuracy: 1:14,000 (12 m)

Resolution: **3 meter**

Spatial reference:

NAD 1983 WA State Plane South NAVD 1988

Processing methods:

As delivered GRID. Created using photogrammetric methods from vertical air photos, then to contour, then to DEM.

DTM Dataset: 1999 Photogrammetry

Date:	9-3-1999
Stated accuracy:	1:14,000 (12 m)
Resolution:	(3 meter)
Spatial reference:	

NAD 1983 WA State Plane South NAVD 1988

Processing methods:

XYZ ASCII to multipoint, then created terrain dataset.

DTM Dataset: 2003 LiDAR (ALS)

Date: 9-19 to 10-2

Stated accuracy: 30 cm XY 15-30 cm Z

Resolution:

Spatial reference:

NAD 1983 UTM Zone 10 North NAVD 1988

5 meter

Processing methods:

As delivered GRID.

DTM Dataset: 2003 LiDAR (ALS)

Date:	9-19 to 10-2
Stated accuracy:	30 cm XY 15-30 cm Z
Resolution:	(1.6 meter)

Spatial reference:

NAD 1983 UTM Zone 10 North NAVD 1988

Processing methods:

Edited XYZ ASCII (last return) to multipoint, then created terrain dataset.

DTM Dataset: 2003 LiDAR (ALS)

Date:	9-19 to 10-2
Stated accuracy:	30 cm XY 15-30 cm Z
Point density: Point spacing: Resolution:	0.15 pts m ⁻² 2.6 m (last) 2 meter

Spatial reference:

NAD 1983 UTM Zone 10 North NAVD 1988

Processing methods:

Terrain to raster using natural neighbor.

DTM Dataset: 2007 LiDAR (ALS)

Date:	10-22 to 10-27
Stated accuracy:	4.6-7.6 cm XY 0.6-13 cm Z
Point density: Point spacing: Raster resolution:	5.89 pts m ⁻² <i>41.2 cm</i> 1 m
Spatial reference:	

NAD 1983 WA State Plane South NAVD 1988 Geoid 2003

Processing methods:

As delivered GRID.

DTM Dataset: 2009 LiDAR (ALS)

Date:	10-22 to 10-27
Stated accuracy:	3.2-7.1 cm XY 0.4-15 cm Z
Point density: Point spacing: Raster resolution:	9.45 pts m ⁻² 1.1 cm 1 m

Spatial reference:

NAD 1983 WA State Plane South NAVD 1988 Geoid 2003

Processing methods:

As delivered bare earth.

DTM Dataset: 2009 LiDAR (ALS)

Date:	10-22 to 10-27
Stated accuracy:	3.2-7.1 cm XY 0.4-15 cm Z
Point density: Point spacing: Raster resolution:	9.45 pts m ⁻² 1.1 cm 15 cm

Spatial reference:

NAD 1983 WA State Plane South NAVD 1988 Geoid 2003

Processing methods:

LAS (last return) to multipoint, to terrain dataset, to terrain to raster.

DTM Dataset: 2009 LiDAR (ALS)

Date:	10-22 to 10-27
Stated accuracy:	3.2-7.1 cm XY 0.4-15 cm Z
Point density: Point spacing: Raster resolution:	9.45 pts m ⁻² 1.1 cm 30 cm
Spatial reference:	

NAD 1983 WA State Plane South NAVD 1988 Geoid 2003

Processing methods: LAS (last return) to multipoint, to TIN, to create raster.

DTM Dataset: 2009 LiDAR (ALS)

DTM Dataset: 2009 LiDAR (ALS)

DTM Dataset: 2009 LiDAR (ALS)

Date:	10-22 to 10-27				
Stated accuracy:	3.2-7.1 cm XY 0.4-15 cm Z				
Point density: Point spacing: Raster resolution:	9.45 pts m ⁻² 1 <i>.1 cm</i> 30 cm				
Spatial reference:					
NAD 1983 WA State Plane South NAVD 1988 Geoid 2003					
Processing methods:					
LAS (last return) to					
multipoint, interpolation (spline,					
IDW) to raster cre	eation				

DTM Dataset: 2010 LiDAR (TLS)

Datasets: DTM & GCPs

	2010 GCP	2009 GCP	2007 GCP	1997 GCP	1987 GCP	1983 GCP
1983 topo map						
1987 Vert. Aerial Photogrammetry						
1999 Vert. Aerial Photogrammetry						
2003 ALS 2003 (delivered)						
2003 ALS 2003 (reprocessed)						
2007 ALS (delivered)						
2009 ALS (delivered)						
2009 ALS (reprocessed)						
2010 TLS (processed)						
2010 Oblq. Aerial Photogrammetry						
2010 Oblq. Ground Photogrammetry						
1' NED						
1/3' NED						
1/9' NED ('03 LiDAR-based)						

COMPLETED NOT YET COMPLETED

DTM Dataset: NED

Date: Compilation

Stated accuracy: 2.44 m RMSE Z

Raster resolution: 3, 10, 30 meter

Spatial reference:

NAD 1983 GCS

Methods: Statistical Analysis

Results: 2009 LiDAR Derivatives

ANOVA:

	Df	Sum Sq	Mean Sq	F value	Pr(>F
Treatment	11	872.57	79.325	7.4408	>0.001
Residuals	276	2942.36	10.661		

TukeyHSB:

Found Last Raster to be significantly different from all the other rasters.

p adj

<0.001

<0.001 <0.001

<0.001 <0.001

<0.001 <0.001

<0.001

<0.001

<0.001

Terrain-Linear.5-LAST
Terrain-Linear1-LAST
Terrain-Nearest.5-LAST
Terrain-Nearest-LAST
PT_R1-LASTTR09
PT_R2-LASTTR09
SPL-LASTTR09
TIN-LASTTR09
LAST-CUB2
LAST-BareEarth

Results: 2009 LiDAR Derivatives

	RMSE	Mean	Max	Min
TIN to Raster	5.16	3.83	9.64	-4.38
Pt. to Raster-IDW	5.43	3.98	10.24	-4.73
Pt. to Raster – 1 ft	5.36	3.93	10.32	-4.46
Pt. to Raster – 2ft	5.10	3.83	10.28	-4.21
Pt. to Rst – 1ft resample	5.43	4.25	9.71	-3.97
to 2ft				
Pt. to Raster - Spline	5.46	4.00	10.32	-4.61
Terrain Dataset	3.71	-2.40	1.37	-9.95
Delivered-Bare Earth	3.64	2.49	10.18	-2.58
Terrain to Rst –Linear	3.71	2.44	9.95	-1.09
0.5ft				
Terrain to Rst –Linear	3.64	2.30	9.96	-1.09
1ft				
Terrain to Rst –Nearest	3.69	2.35	9.95	-1.09
0.5ft				
Terrain to Rst –Nearest	3.64	2.24	9.96	-1.09
1ft				

Results: RTK Points, 2009 Terrain Models

ANOVA:

	Df	Sum Sq	Mean	Sq	F value	Pr(>F)
Treatment	4	38.17	9.54		2.79	0.025
Residuals	560	1914.13	3.41			
RMSE, N	1ean.					
Terrain-linear, 0.5 1.75, -0.26						26
Terrain-linear, 1ft 1.72, 0.27						27
Terrain-nearest, 0.5 1.75, 0.27						27
Terrain-nearest, 1ft 1.72, 0.28					28	
Bare	Earth	า		2.3	33 <i>,</i> 0.5	4

TukeyHSB:

Significant difference between Terrain-linear0.5 and Bare Earth models.

Digital Terrain Models (DTMs)

Digital Terrain Models (DTMs)

Digital Terrain Models (DTMs)

Results: 2003 Lidar Derivatives

ANOVA:

Treatment Residuals	Df 2 417	Sum Sq 263 52212	Mean Sq 131.26 125.21	F value 1.0483	Pr(>F 0.3514
RMSE:					
Terrain Nearest		rest	3.66		
Delivered 5m		m	3.43		
Terrain Last			3.62		

TukeyHSB:

This test found no pair wise differences between the treatments as is expected from the ANOVA results.

The lack of significant differences here is likely due to the control points being generated in 2010 and at a date closer to 2003.

Results: NED

Results: 1987 and 1999 Grids

Conclusion

• *RMSE indicates terrain* datasets are most accurate, however there is no statistical difference between most methods.

•RTK points and 2009 are most closely related temporally and statistically.

•RTK statistics support observations that the delivered bare earth raster has been subjected to further filtering of the last return LAS file.

• Creating maximum resolution rasters based on point spacing can cause numerous no data cells and does not improve accuracy.

- Stated RMSE s lower than project derived values due to limited ground truthing.
- Given a study area of 1 km², volume calculations can vary as much as 457,000 m³

Application: Surface Differencing

2009 vs. 1987

Application: Surface Differencing

Application: Surface Differencing

Data Sources

- USGS Cascades Volcano Observatory
- USGS Seamless Server
- USGS CLICK
- USDA / NRCS Geospatial Data Gateway
- UNAVCO Plate Boundary Observatory
- University of Colorado at Boulder
- USDA Agricultural Research Service
- US Army Corps of Engineers

- http://seamless.usgs.gov/
- http://lidar.cr.usgs.gov/
- http://datagateway.nrcs.usda.gov/