
Using Random Forests and Geographic Weighted Regression to Assess Influential Variables on the Annual Energy Use Intensity of Residential Buildings in Portland, Oregon

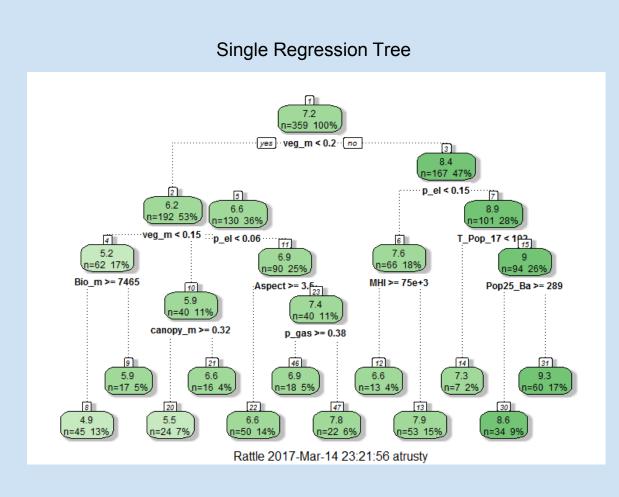
- residential energy intensity in Portland, Oregon
- governments achieve goals to reduce CO2 emissions
- from Random Forests

159. 589-600.

Zachary Neumann, Kristen Purdy, Alec Trusty

References:

0 125 2.5 5 kg


Ewing, Reid, and Fang Rong. "The impact of urban form on US residential energy use." Housing policy debate 19.1 (2008): 1-30. Escobedo, F., Seitz, J., & Zipperer, W. (2012). The Effect of Gainesville's Urban Trees on Energy Use of Residential Buildings. IFAS Extension. Retrieved February 2, 2017, from https://edis.ifas.ufl.edu/pdffiles/FR/FR27300.pd Huebner, G. M., Hamilton, I., Chalabi, Z., Shipworth, D., & Oreszczyn, T. (2015). Explaining domestic energy consumption-the comparative contribution of building factors, socio-demographics, behaviours and attitudes. Applied energy,

Dietz, R. (2015, May 19). New Single-Family Home Size Increases at the Start of 2015. Retrieved March 19, 2017, from http://eyeonhousing.org/2015/05/new-single-family-home-size-increases-at-the-start-of-2015/ Random Forests Leo Breiman and Adele Cutler. (n.d.). Retrieved March 19, 2017, from https://www.stat.berkeley.edu/~breiman/RandomForests/

Analysis methods:

tegory	Alias	Variable		0.05 0.15 0.25		900 1960		0 1000 2000	
Building Structure	Year_m Sqft_m	Average Year House was Built Average size of the home		0.78	0.58	0.56	0.63	0.59	
	P_gas P_oil P_el	Percentage of homes heated by gas Percentage of home heated by oil Percentage of homes with electric heating	05 020	veg_m	0.56	0.62	0.47	0.57	
sehold	Hsize m MHI	Average household size Median household Income			canopy_m	14	0.30	0.55	
Surrounding Landscape	Aspect Canopy_m	Dominant direction of slope Average percentage canopy cover around each home				Year_m	0.53	0.27	0
	Veg m Bio_m	Average percentage vegetation Average biomass Index			and the same		p_et	0.39	0.
Neighborhood	OOHU CivPop CivPop_Emp	Owner occupied housing units Civilian population Civilian population, employed						Pop25_Ba	0.4
	CivPop_Un Pop25 Pop25 Ba	Civilian population, unemployed population over 25 years old population over 25, with education higher than bachelors							Pop2
	T_Pop Pop_Den_sq T_Pop_17	total population population density per square mile total population under 17 years old			02 04 06				0 200

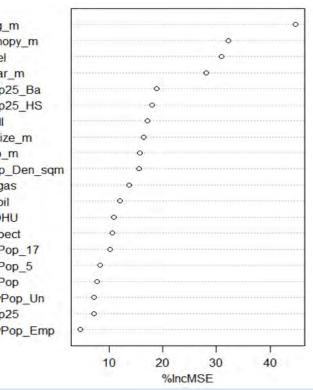
Regression Tree & Random Forest A decision tree and machine learning technique, Random Forests (Brieman, 2016), was applied to determine the most influential explanatory variables. The model, which was optimized at 1000 trees and 5 randomly selected variables at each node, resulted in a mean square error of 0.58 and 77.23% variance explained.

Geographically Weighted Regression (GWR) We used a local statistical technique, GWR, to assess where our variables were predicting EUI the best, and where they weren't. Year_m was highly correlated with Veg_m, and removed to reduce multi-colinearity in the explanatory variables. Veg_m, Canopy_m, P_el, Pop25_Ba, Pop25_HS, and MHI were used. GWR was run with a fixed kernel type and AIC bandwidth method. Global Moran's I was used to check for spatial autocorrelation of the residuals, and was found to be spatially clustered (z-score = 12.41).

Model

Random Forest

Geographically weighted Regression


Discussion:

- degree or more, median household income
- school, electric heating
- Portland

- additional key variables, perhaps related to urban planning and zoning

Variable Importance Plot

		Spatial Autocorrelation Report
		Moran's Index: 0.095766 Significance Level Critical Value (prvalue) p-value: 0.00000 0.01 < 2.58 0.01 < 2.58 -1.96 0.01 < 1.65 -1.65 0.01 < 1.65 1.65 0.01 < 2.58 -1.96 0.01 < 2.58 1.96 0.01 < 2.58 1.96 0.01 < 2.58 1.96
	Variance Explained	Significant (Random)
	0.7723	
n	0.716	
		Dispersed Random Clustered Given the 2-score of 12,4147482914, there is a less than 1% Melhood that this clustered nation could be the required random chance.

• Factors that decreased energy consumption were: canopy cover, educational attainment bachelor's

• Factors that increased energy consumption were: vegetation, educational attainment less than high

• Generally we see the model overpredicted in outer NE and SE Portland, and under predicted in inner E

• We tried to see what other variables could be added to our model to improve our results

• One variable we examined was homes built after 1985. We found that this may help explain energy use in E Portland, but the pattern did not line up with the trend seen in NE Portland

• The model could be improved by looking at areas where the EUI was over or under predicted to find

• Once improved, these findings could be used for planning efforts to help decrease energy consumption