MODELING POTENTIAL HABITAT OF BROMUS TECTORUM IN OREGON

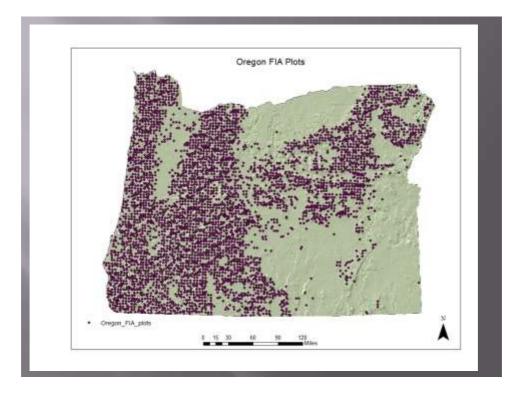
John Richardson-Meyer Jen Hanson GEOG592 March 20, 2012

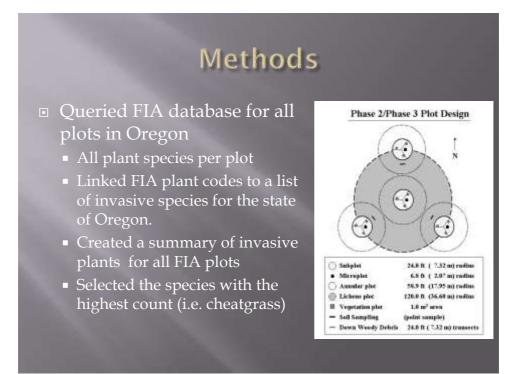
Background

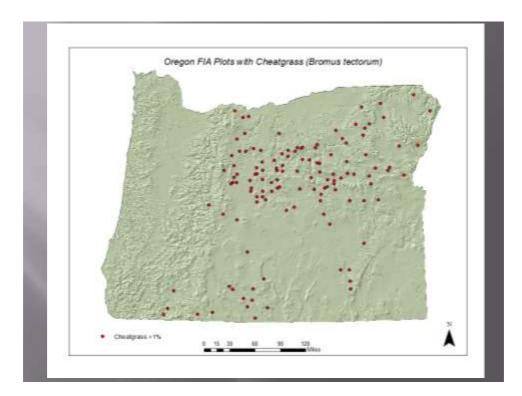
• Cheatgrass (*Bromus tectorum L.*) was first introduced in the US in the late 1800's as a packing material

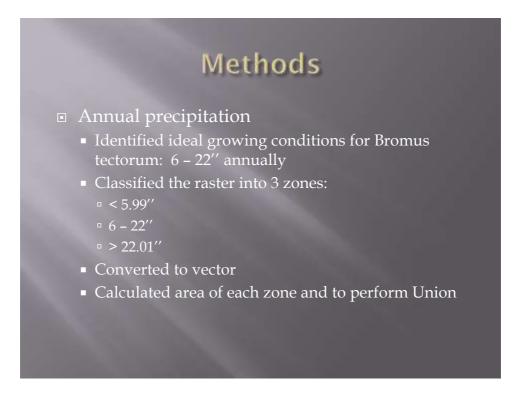
• By the 1930's it was the dominate grass in the Pacific Northwest and the Intermountain West regions

Currently covers over 100 million acres nationwide

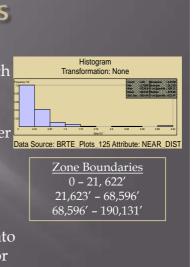



Problem Statement


- Non-native species are a leading cause of habitat degradation.
- Control and eradication of these problematic species account for millions of dollars spent every year.
- How can we assist land managers in identifying areas of potential population locations, specifically *Bromus tectorum*?


Methods

- Data layers
 - USFS FIA data for Oregon from 2003-2007
 - Annual precipitation
 - Oregon roads
 - Oregon DEM
 - EPA level IV Ecoregions of Oregon
 - Modified Oregon state boundary



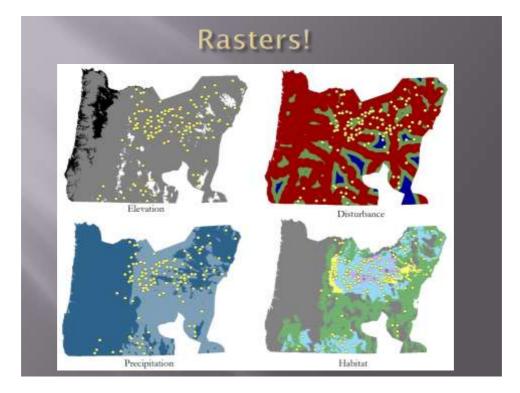
Methods

Disturbance

- Ran the Near tool to identify which roads were near *Bromus tectorum* plots
- Created a histogram to see whether or not there was a trend between plots and proximity to roads
- Ranked the roads based on their proximity into 3 zones
- Converted to a raster to classify into 3 zones and then back into a vector to calculate area and to perform a Union

Methods

Elevation


- Reclassified the raster into 3 zones:
 <499'
 - □ 500′ **-** 6000′
 - □ >6001′
- Converted to vector to calculate area of each zone and to perform Union

Modified Oregon state boundary

- Accounted for areas of Oregon with low plot density.
- Digitized and erased areas in the Southeast, South and North Central Oregon.

Methods

- EPA Ecoregions of Oregon
 - Converted polygon to raster to determine pixel count for each area (used to calculate % of Area (POA))
 - Spatial Join of Ecoregion categories to Cheatgrass plot shapefile for count of cheatgrass per Ecoregion (used to determine % occurrence of frequency (POF))

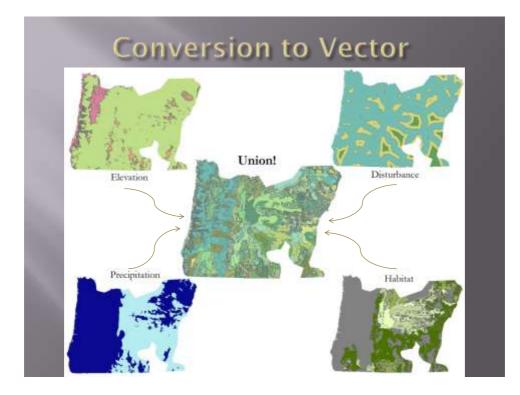
Frequency Ratio Table Precipitation			
Range	% Area	% Occurrence Frequency	Frequency Ratio
<5.99"	0	0	0
6.0-22"	68.8	46.8	0.7
>22.01	31.2	53.2	1.7

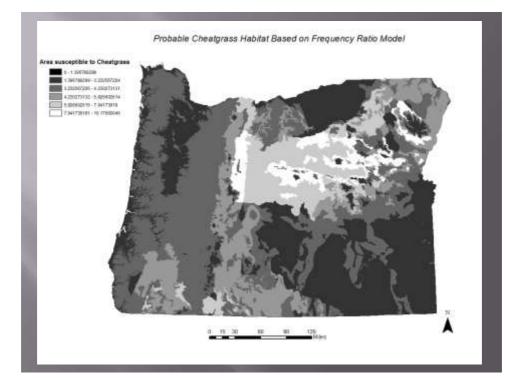
Frequency Ratio Table Elevation			
Range	% Area	% Occurrence Frequency	Frequency Ratio
<499	12.1	0	0
500-6000	83.9	98.4	1.2
>6001	4.0	1.6	0.4

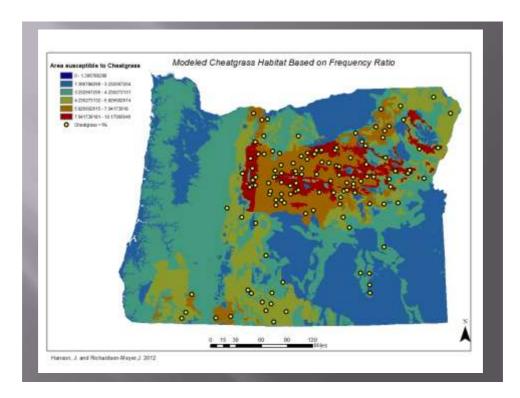
Frequency	Ratio Table
Distu	rbance

Range	% Area	% Occurrence Frequency	Frequency Ratio
1	72.3	78.4	1.1
2	20.7	19.2	0.9
3	7.0	2.4	0.3
	1000	1.00	

Frequency Ratio Table Ecoregions


	% Area	% Occurrence Frequency	Frequency Ratio
Canyons and Dissected Highlands	1.198716335	1.6	1.334761155
Canyons and Dissected Uplands	1.208155047	0.8	0.662166667
Cascade Crest Montane Forest	2.109551976	1.6	0.758454884
Continental Zone Foothills	4.118424364	3.2	0.77699618
Continental Zone Highlands	1.706833627	4	2.343520737
Deschutes River Valley	1.736722879	7.2	4.14573913
Deschutes/John Day Canyons	0.734646363	1.6	2.17791863
Fremont Pine/Fir Forest	1.76818525	3.2	1.809765125
High Lava Plains	11.27768689	4	0.354682661
Inland Siskiyous	2.72306821	1.6	0.587572501
John Day/Clarno Highlands	2.719921973	16.8	6.176647773
John Day/Clarno Uplands	5.54524289	20.8	3.750962837
Klamath Juniper Woodland/Devils Garden	0.866788321	1.6	1.845894737
Klamath/Goose Lake Basins	1.137364712	0.8	0.70338036
Maritime-Influenced Zone	1.518059401	5.6	3.688920207


Frequency Ratio Table Ecoregions Cont.


Melange	1.360747546	6.4	4.7032971
Mesic Forest Zone	2.474515479	0.8	0.32329561
Oak/Conifer Foothills	0.522275359	1.6	3.06351807
Owyhee Uplands and Canyons	1.93178958	0.8	0.41412377
Ponderosa Pine/Bitterbrush Woodland	1.187704505	5.6	4.71497748
Pumice Plateau	4.675308331	3.2	0.68444683
Rogue/Illinois/Scott Valleys	0.32563554	0.8	2.456734
Southern Cascades Slope	0.523848477	1.6	3.05431831
Umatilla Plateau	2.153599295	2.4	1.1144134
Wallowas/Seven Devils Mountains	0.578907626	2.4	4.1457391

Methods

- Union tool
 - Elevation
 - Precipitation
 - Disturbance
 - Ecoregions
- Calculated total frequency ratios for new Union vector
- Converted to raster & classified based on total frequency ratio values

Problems

- There's a possibility of correlation between elevation data and ecoregion data
- FIA protocol records only >1% of species coverage per subplot
- Roads layer is a surrogate for the disturbance variable
- Areas omitted from analysis were coarse
- No way to verify because all data was used to create model

What's Next...

- Leave out ~30 points to verify model
- Use soil data in place of ecoregion
- Perform a logistical regression and additional variables for *Bromus tectorum* habitat (ie. Canopy cover, specific disturbance history, etc.)

<section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

