Analytical Methods

AMI Academic and analytical

- origins 5-1 Academic frondations 3-2 Analytical approaches

AM2 Query operations and query languages

- 2-1 Set facery 3-2 Structured Query Language (SQL) and attribute queries 2-3 Spatial queries
- AM3 Geometric measures 3-1 Distances and length 3-2 Dimition 3-3 Maps 3-4 Ann 3-5 Provinsity and distance iteraty 3-6 Adjacency and connectivity

- AM4 Basic analytical operations 4-1 Beffers 4-2 Overlay 4-3 Neighterbands 4-4 Map algebra

AM5 Basic analytical methods

constant attributes.

- VPD Dataset attraction memory 5-1 Point induction analysis 5-3 Kernels and denoisy estimation 5-3 Spartial classic analysis 5-4 Spartial classic analysis 5-4 Categorghic modeling 5-7 Multi-encodering modeling 5-7 Multi-encodering models

AM6 Analysis of surfaces

- 8-1 Calculating surface derive 6-2 Interpolation of surfaces 8-3 Surface features 8-4 Intervisional 6-5 Friction surfaces

AM7 Spatial statistics

- ANT / Sportial statistics 7-3 Copelast institude 5-2 Stochastic processor 7-3 Checkastic processor 7-4 Golda insurements of spatial association 7-5 Local memory of spatial association 7-6 Outline 7-7 Bayesian methods

- AMB Geostatistics 5-1 Spotal sampling for statistical analysis 5-2 Branches of smil-variogram constitution 8-3 Reni-variogram modeling 8-4 Perceptus et Anging 8-5 Scripting variant

AM9 Spatial regression and

- Correspondences and a second state of the second state of the

AM10 Data Mining 16-1 Problems of large spatial databases 16-2 Data mining approaches 16-3 Kprininge docorary 16-4 Pattern recognition and matching

AMH Network analysis

11-1 Networks defined 11-2 Graph (beoretic (descriptive) manure 11-3 Least-cost (identest) path 11-4 Flow modeling 11-5 The Classic Transportation Problem 11-6 Other plausic network problems 11-7 Accessifiabity Modeling

AM12 Optimization and

- Jocation-allocation and location-allocation modeling 12-1 Operation reserve modeling and location modeling principles 12-1 Locar programming 12-1 Locar programming 12-4 Location-allocation modeling and

Geographic Information Science & Technology dy of Knowledge Ð 0 Ð

Edited by David Dill. Michael DeM n, Karen Kemp, Ann Tavlor Lack, B

UNIVERSITY CONSORTIUM FOR GEOGRAPHIC INFORMATION SCIENCE.

The DoL estimated a \$30b/year GIS industry, but where are the GIS jobs?

Figure 2: "Pyramid" of roles played by GIS&T professionals. Fewer, but more highly skilled, personnel are needed at the upper levels of the pyramid. (Marble, 1998).

		Position		Average (Group Avg)	
2004 Salary Survey for the Geospatial Sciences	Manager	Production Director/Operations Manager Sales/Marketing Monager Photogrammetry Department Manager Suparvisory Parson Human Resources/Personnel Manager GIS Manager/Coordinator Sales Representative Technical/Production Manager	102,264 100,365 79,739 78,650 77,580 77,011 73,038 72,275	\$82,615	
	Seniar Analyst	Sr. GIS Programmer Systems Manager GPS/Survey Manager GIS Project Manager Br. Programmer/Analyst Pitot Commercial/Instrument GIS Database Manager	71,006 70,874 70,262 89,110 68,604 67,639 67,516	\$69,288	
	Analyst	GIS Programmer Sunice Image Analyst Programmer/Analyst Planner Sr. GIS Specialist Sr. Stereoplotter Operator - Analytical and Softcopy Coeffir Assurance Analyti	61,452 59,561 59,452 58,928 55,475 55,020 52,093	\$57,426	
	Technician	Market Analyst/Research Specialist GIS Specialist Digital Ortho Image Technician Aerial Photographer Sr. Graphics Workstation Operator Photo Lab Manager Stereopiciter Operator - Analytical and Softcopy GPS Survayor/Technician	48,212 46,812 44,929 44,557 44,325 44,237 41,236 41,145 40,757	\$44,023	
GeoSearch, Inc. (www.geosearch.com)	Jr. Technician	Raster/Vector Technician Graphics Workstation Operator Computer Processing Technician Jr. Stereoplotter Operator - Analyticat and Softcopy Photo Lab Technician Jr. Graphics Workstation Operator	37,088 37,040 36,252 32,054 31,084 23,846	\$33,044	

Roles	Tasks	Your Status
Applications Development	Identify and develop tools and instruments	?
Data Acquisition	Collect geospatial and related data	\checkmark
Coordination	Interorganizational facilitation and communication	?
Data Analysis & Interpretation	Process data and extract information to create products, drive conclusions, and inform decision-making	\checkmark
Data Management	Catalog, archive, retrieve, and distribute geospatial data	\checkmark
Management	Using financial, technical, and intellectual skills and resources to optimize the end products	?
Marketing	Identify and communicate the requirements and needs of geospatial solutions	?
Project Management	Oversee activity requirements to produce the desired outcomes	?
Systems Analysis	Assess requirements to produce the desired outcomes on time and within budget	?
Systems Management	Integrate resources and develop additional resources to support user requirements	?
Training	Effective transfer of knowledge and evaluation for performance enhancement	?
Visualization	Render data and information into visual geospatial representations	\checkmark

Table 2: Twelve roles played by geospatial technologyprofessionals (Gaudet, Annulis, & Carr, 2003).

The 10 most desirable skills for someone entering the GIS, Photogrammetry, and Remote Sensing workforce (in no particular order)

- 1. College degree- Geospatial science preferred
- 2. GIS and CAD software familiarity- not necessarily proficiency
- 3. Math Skills
- 4. Technology literate/ Basic computer skills
- 5. Able to work in team and alone unsupervised
- 6. Able to communicate in oral and written form
- 7. Grasp of the world
- 8. Have a strong portfolio that shows your range of skills
- 9. Cartographic eye/skills
- 10. Ability to Network

http://www.psuasprs.groups.pdx.edu/colloquium/2007/CareerLinks_2007.htm

GIS&T Body of Knowledge 10 Topics

- · Analytical Methods
- Cartography & Visualization
- Design Aspects
- Conceptual Foundations
- · Data Modeling
- Data Manipulation
- GIS&T and Society
- · Geocomputation
- · Organizational and Institutional Aspects
- · Geospatial Data

Spatial Concepts & Data

- Analytical Methods
- Cartography & Visualization
- Conceptual Foundations
- Data Manipulation
- Geospatial Data

Information & Computation Technologies

- Design Aspects
- Data Modeling
- Geocomputation

Human & Computer Interfaces

- GIS&T and Society
- Organizational and Institutional Aspects

Spatial Concepts & Data

Analytical Methods

AMI Academic and analytical

origins 1-1 Academic frendation 1-2 Academic frendation

- AM2 Query operations and query
- Increases 31 Section 2007 Longings (SQL) and artifact queries 33 Spatial queries

AM3 Geometric measures 3-1 Distances and length 3-2 Dimetrus 3-3 Shape 3-3 Shape 3-4 Anno 3-5 Provineity and distance sinces 3-5 Provineity and suspectively

- AM4 Basic analytical operations 4.1 hefter 4.2 Overlay 4.3 Neighborhoods 4.4 Mag startes

AMS Basic analytical methods 5.1 Point pattern analysis 5.3 Sprint choire analysis 5.3 Sprint choire analysis 5.4 Sprint interaction 5.5 A racking metholismes used attribute 5.6 Categorphics modeling 5.5 Multi-interaction 5.4 Sprint process models

AM6 Analysis of surfaces

- 8-1 Calculating surface deriv 6-2 Interpolation of surfaces 6-3 Surface formers 6-4 Interventility 8-5 Friction surfaces

AM7 Spatial statistics

- ASI Separate Statistics 74 Geptical solutions 74 Separate solutions 74 Second solutions 74 October solutions 74 October solutions 74 October solutions 74 October 75 Despense methods

- AMB Geostatistics 6-3 Spatial sampling for statistical analysis 6-2 Principles of statistical analysis construction 8-3 Sensivatogram modeling 8-4 Principles of Luignag 8-5 Kingang samans

AM9 Spatial regression and

- COT Spatial regression and economic trics 9-1 Principle of quild economics 9-2 Spatial astronomous models 9-2 Spatial Ritering 9-4 Spatial regression (GWR)
- AM10 Data Mining 10-1 Polders of large quital databases 10-2 Data realing approaches 10-3 Rooving datasersy 10-4 Pattern recognition and maching

AM11 Network analysis

- Act of Verwork analytic 11-6 Mercenic defined 11-5 Cosph theoretic (description) materials 11-5 Least-cost (shermst) path 11-4 Eises modeling 11-5 The Chain: Transportation Politica 11-6 Other chains network problems 11-5 Accessibility Modeling

AM12 Optimization and

- CM12 Optimization and location-allocation modeling 12-1 Operations reserve nodeling and location moduling principles 12-2 Linear programming 12-3 Integer programming 12-4 Linearlow-allocation modeling and

Cartography and Visualization

CV1 History and trends

- 1-1 History of cartography
- 1-2 Technological transformations

CV2 Data considerations

- 2-1 Source materials for mapping
- 2-2 Data abstraction: classification,
- selection, and generalization
- 2-3 Projections as a map design issue
- CV3 Principles of map design
- 3-1 Map design fundamentals
- 3-2 Basic concepts of symbolization
- 3-3 Color for cartography and visualization
- 3-4 Typography for cartography and visualization

CV4 Graphic representation techniques

- 4-1 Basic thematic mapping methods
- 4-2 Multivariate displays
- 4-3 Dynamic and interactive displays
- 4-4 Representing terrain
- 4-5 Web mapping and visualizations
- 4-6 Virtual and immersive environments
- 4-7 Spatialization
- 4-8 Visualization of temporal geographic data
- 4-9 Visualization of uncertainty

CV5 Map production

- 5-1 Computational issues 5-2 Map production
- 5-3 Map reproduction

CV6 Map use and evaluation

- 6-1 The power of maps
- 6-2 Map reading
- 6-3 Map interpretation
- 6-4 Map analysis
- 6-5 Evaluation and testing
- 6-6 Impact of uncertainty

Conceptual Foundations

CF1 Philosophical foundations

- 1-1 Metaphysics and ontology
- 1-2 Epistemology
- 1-3 Philosophical perspectives

CF2 Cognitive and social

- foundations
- 2-1 Perception and cognition of geographic phenomena
- 2-2 From concepts to data
- 2-3 Geography as a foundation for GIS
- 2-4 Place and landscape
- 2-5 Common-sense geographies
- 2-6 Cultural influences
- 2-7 Political influences

CF3 Domains of geographic information

- 3-1 Space 3-2 Time
- 3-3 Relationships between space and time
- 3-4 Properties

CF4 Elements of geographic

- information
- 4-1 Discrete entities
- 4-2 Events and processes
- 4-3 Fields in space and time 4-4 Integrated models

CF5 Relationships

- 5-1 Categories 5-2 Mereology: structural relationships
- 5-3 Genealogical relationships: lineage,
 - inheritance
- 5-4 Topological relationships 5-5 Metrical relationships: distance and direction
- 5-6 Spatial distribution
- 5-7 Region
- 5-8 Spatial integration

CF6 Imperfections in geographic information

- 6-1 Vagueness
- 6-2 Mathematical models of vagueness: Fuzzy sets and rough sets
- 6-3 Error-based uncertainty
- 6-4 Mathematical models of uncertainty: Probability and statistics

Data Manipulation

DN1 Representation transformation

- 1-1 Impacts of transformations
- 1-2 Data model and format conversion
- 1-3 Interpolation
- 1-4 Vector-to-raster and raster-to-vector conversions
- 1-5 Raster resampling
- 1-6 Coordinate transformations

DN2 Generalization and aggregation

- 2-1 Scale and generalization
- 2-2 Point, line, and area generalization
- 2-3 Classification and transformation of attribute measurement levels
- 2-4 Aggregation of spatial entities

DN3 Transaction management

- 3-1 Database change
- 3-2 Modeling database change
- 3-3 Reconciling database change
- 3-4 Managing versioned geospatial databases

Geospatial Data

GDI Earth geometry

1-1 History of understanding Earthis shape 1-2 Geoids 1-3 Spheres and ellipsoids

GD2 Land partitioning systems

2-1 Unsystematic methods 2-2 Systematic methods

GD3 Georeferencing systems

- 3-1 Geographic coordinate system 3-2 Plane coordinate systems 3-3 Tessellated referencing systems
- 3-4 Linear referencing systems

GD4 Datums

4-1 Horizontal datums 4-2 Vertical datums

GD5 Map projections

- 5-1 Map projection properties 3-2 Map projection classes
- 5-3 Map projection parameters 5-4 Georegistration

GD6 Data quality

- 6-1 Geometric accuracy 6-2 Thematic accuracy 6-3 Resolution

- 6-4 Precision 6-5 Primary and secondary sources

GD7 Land surveying and GPS

- 7-1 Survey theory and electro-optical methods
 7-2 Land records
 7-3 Global Positioning System

GD8 Digitizing

8-1 Tablet digitizing 8-2 On-screen digitizing 8-3 Scanning and automated vectorization

GD9 Field data collection

9-1 Sample size selection 9-2 Spatial sample types 9-3 Sample intervals 9-4 Field data technologies

GD10 Aerial imaging and

- photogrammetry
- 10-1 Nature of aerial image data 10-2 Platforms and sensors 10-3 Aerial image interpretation
- 10-4 Stereoscopy and orthoimagery 10-5 Vector data extraction
- 10-6 Mission planning

GD11 Satellite and shipboard

- remote sensing
- 11-1 Nature of multispectral image data 11-2 Platforms and sensors
- 11-3 Algorithms and processing 11-4 Ground verification and accuracy
- assessment
- 11-5 Applications and settings

GD12 Metadata, standards, and infrastructures

- -3 Metadata
- 12-2 Content standards 12-3 Data warehouses 12-4 Exchange specifications
 - 12-5 Transport protocola 12-6 Spatial Data Infrastructures

Information & Computation **Technologies**

Design Aspects

DA1 The scope of GIS&T

system design

- 1-1 Using models to represent information and processes
- 1-2 Components of models: data, structures, procedures
- 1-3 The scope of GIS&T applications
- 1-4 The scope of GIS&T design
- 1-5 The process of GIS&T design

DA2 Project definition

- 2-1 Problem definition
- 2-2 Planning for design
- 2-3 Application/user assessment
- 2-4 Requirements analysis
- 2-5 Social, political, and cultural issues

DA3 Resource planning

- 3-1 Feasibility analysis
- 3-2 Software systems
- 3-3 Data costs
- 3-4 Labor and management
- 3-5 Capital: facilities and equipment
- 3-6 Funding

DA4 Database design

- 4-1 Modeling tools
- 4-2 Conceptual model
- 4-3 Logical models
- 4-4 Physical models

DA5 Analysis design

- 5-1 Recognizing analytical components
- 5-2 Identifying and designing analytical procedures 5-3 Coupling scientific models with GIS
- 5-4 Formalizing a procedure design

DA6 Application design

- 6-1 Workflow analysis and design
- 6-2 User interfaces
- 6-3 Development environments for geospatial applications 6-4 Computer-Aided Software Engineering
- (CASE) tools

DA7 System implementation

- 7-1 Implementation planning7-2 Implementation tasks7-3 System testing

- 7-4 System deployment

Data Modeling

DM1 Basic storage and retrieval

structures

- 1-1 Basic data structures
- 1-2 Data retrieval strategies

DM2 Database management

- systems
- 2-1 Coevolution of DBMS and GIS
- 2-2 Relational DBMS
- 2-3 Object-oriented DBMS
- 2-4 Extensions of the relational model

DM3 Tessellation data models

- 3-1 Grid representations
- 3-2 The raster model
- 3-3 Grid compression methods
- 3-4 The hexagonal model
- 3-5 The Triangulated Irregular Network (TIN) model
- 3-6 Resolution
- 3-7 Hierarchical data models

DM4 Vector and object data models

- 4-1 Geometric primitives 4-2 The spaghetti model
- 4-3 The topological model 4-4 Classic vector data models
- 4-5 The network model 4-6 Linear referencing
- 4-7 Object-based spatial databases

DM5 Modeling 3D, uncertain, and temporal phenomena

- 5-1 Spatio-temporal GIS
- 5-2 Modeling uncertainty
- 5-3 Modeling three-dimensional entities

Geocomputation

GC1 Emergence of

geocomputation

1-2 Trends

GC2 Computational aspects and

- neurocomputing
- 2-1 High performance computing
- 2-2 Computational intelligence 2-3 Non-linearity relationships and
- non-Gaussian distributions
- 2-4 Pattern recognition 2-5 Geospatial data classification
- 2-6 Multi-layer feed-forward neutral
- networks
- 2-7 Space-scale algorithms
- 2-8 Rule learning 2-9 Neural network schemes

GC3 Cellular Automata (CA)

- 3-1 CA Model Structure
- 3-2 CA Transition Rule
- 3-3 CA simulation and calibration
- 3-4 Integration of CA and other
- geocomputation methods 3-5 Typical CA applications

GC4 Heuristics

- 4-1 Greedy heuristics
- 4-2 Interchange heuristics 4-3 Interchange with probability 4-4 Simulated annealing
- 4-5 Lagrangian relaxation

GC5 Genetic algorithms (GA)

5-1 GA and global solutions 5-2 Genetic algorithms and artificial genomes

GC6 Agent-based models

- 6-1 Structure of agent-based models
- 6-2 Specification of agent-based models
- 6-3 Adaptive agents 6-4 Microsimulation and calibration of
- agent activities
- 6-5 Encoding agent-based models

GC7 Simulation modeling 7-1 Simulation modeling

GC8 Uncertainty

- 8-1 Conceptual model of uncertainty
- 8-2 Error
- 8-3 Problems of scale and zoning
- 8-4 Propagation of error in geospatial
- modeling 8-5 Theory of error propagation 8-6 Problems of currency, source, and scale

GC9 Fuzzy sets

- 9-1 Fuzzy logic 9-2 Fuzzy measures
- 9-3 Fuzzy aggregation operators 9-4 Standardization
- 9-5 Weighting schemes

Human & Computer Interfaces

GIS&T and Society

GS1 Legal aspects 1-1 The legal regime

- 1-2 Contract law
- 1-3 Liability
- 1-4 Privacy

GS2 Economic aspects

- 2-1 Economics and the role of information
- 2-2 Valuing and measuring benefits
- 2-3 Models of benefits
- 2-4 Agency, organizational, and individual perspectives 2-5 Measuring costs

GS3 Use of geospatial information in the public sector

- 3-1 Uses of geospatial information in government 3-2 Public participation in governing
- 3-3 Public participation GIS

GS4 Geospatial information as

- property 4-1 Property regimes 4-2 Mechanisms of control of geospatial
- information
- 4-3 Enforcing control

GS5 Dissemination of geospatial information

- 5-1 Incentives and barriers to sharing geospatial information
- 5-2 Data sharing among organizations and individuals
- 5-3 Legal mechanisms for sharing geospatial information
- 5-4 Balancing security and open access to geospatial information

GS6 Ethical aspects

- 6-1 Ethics and geospatial information 6-2 Codes of ethics for geospatial
- professionals

GS7 Critical GIS

- 7-1 Epistemological critiques 7-2 Ethical critiques
- 7-3 Feminist critiques
- 7-4 Social critiques

Organizational & Institutional Aspects

OI1 Origins of GIS&T 1-1 Public sector origins

- 1-2 Private sector origins
- 1-3 Academic origins 1-4 Learning from experience
- 1-5 Future trends

OI2 Managing the GI system operations and infrastructure

- 2-1 Managing the GI system operations and infrastructure
- 2-2 Ongoing GI system revision
- 2-3 Budgeting for GI system management
- 2-4 Database administration
- 2-5 System management
- 2-6 User support

O13 Organizational structures and procedures

- 3-1 Organizational models for GI system management
- 3-2 Organizational models for coordinating GI systems and/or program participants and stakeholders
- 3-3 Integrating GIS&T with management information systems (MIS)

OI4 GIS&T workforce themes

- 4-1 GIS&T staff development
- 4-2 GIS&T positions and qualifications
- 4-3 GIS&T training and education 4-4 Incorporating GIS&T into existing job classifications

OI5 Institutional and inter-institutional aspects

5-1 Spatial data infrastructures

- 5-2 Adoption of standards
- 5-3 Technology transfer
- 5-4 Spatial data sharing among organizations
- 5-5 Openness 5-6 Balancing data access, security, and privacy
- 5-7 Implications of distributed GIS&T
- 5-8 Interorganizational and vendor GI systems

OI6 Coordinating organizations

- 6-1 Federal agencies and national and international organizations and programs
- 6-2 State and regional coordinating bodies
- 6-3 Professional organizations
- 6-4 Publications
- 6-5 The geospatial community
- 6-6 The geospatial Industry