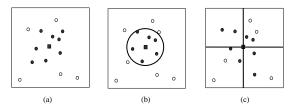
Spatial Interpolation


- · What is spatial interpolation?
 - Estimate values
 - Converting point data to surface data
 - Converting line data to surface data (contours to DEM)
 - Converting area data to surface data (areal interpolation)
- Observations (control points) and interpolator
- Interpolators
 - Global / Local
 - Exact / Approximate
 - Stochastic / Deterministic
 - Geostatistical

Global/Local Methods

- · Global methods
 - Trend surface analysis (Global polynomial interpolation)
- · Local methods
 - IDW
 - Local polynomial interpolation

Local Method

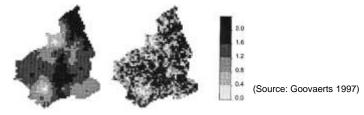
- Neighbors
 - Distribution of control points
 - Extent of spatial autocorrelation

(a) find the closest points to the point to be estimated, (b) find points within a radius, and (c) find points within each of the four quadrants.

IDW

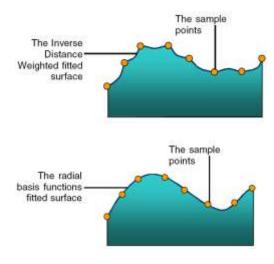
$$z = \frac{\sum_{1}^{s} z_{i} \frac{1}{d_{i}^{k}}}{\sum_{1}^{s} \frac{1}{d_{i}^{k}}}$$

Point	Z	D	Z*1/D^k	1/D^k
Α	10	8	1.25	0.125
В	5	2	2.5	0.5
		Sum=	3.75	0.625
k	1			
X		Z=	6	

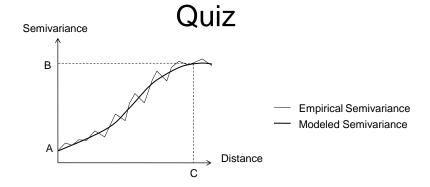


Geostatistical / Simulation Interpolation

Geostatistical estimation (Kriging)

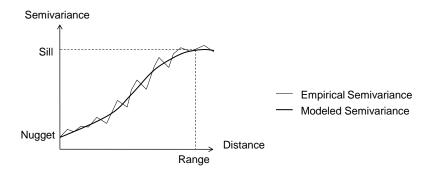

$$\hat{Z}(\mathbf{s}_0) = \sum_{i=1}^N \lambda_i Z(\mathbf{s}_i)$$

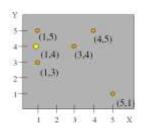
- · Stochastic simulation, conditional to:
 - 1. Observed data values at their locations
 - 2. The histogram of observed data set
 - 3. The semivariance model of observed data set


Spline

Produces a continuous surface with minimum curvature.

Steps of Geostatistical Interpolation


- 1. Calculating the empirical semivariogram
- 2. Fitting a model (modeled semivariogram)
- 3. Creating the (inverse) gamma matrix
- 4. Making a prediction
- 5. Repeat steps 3, 4 for each location to create a surface


In the semivariogram above,

- 1. A is referred to as: a) cookie, b) sill, c) nugget, d) range.
- 2. B is referred to as: a) cookie, b) sill, c) nugget, d) range.
- 3. C is referred to as: a) cookie, b) sill, c) nugget, d) range.

Kriging
$$\hat{Z}(\mathbf{s}_0) = \sum_{i=1}^{N} \lambda_i Z(\mathbf{s}_i)$$

Empirical Semivariogram

Values:

$$(1,5) = 100$$

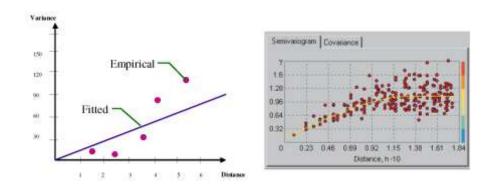
$$(3,4) = 105$$

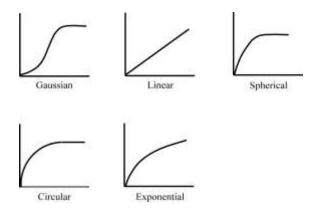
$$(1,3) = 105$$

$$(4,5) = 100$$

$$(5,1) = 115$$

$$d_{ij} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

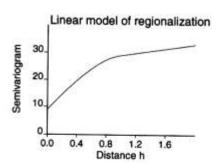

The empirical semivariance is


0.5 * average[(value at location i - value at location f)2].

Locations	Distance Cal.	Distances	Difference ²	Semivariance
(1.5),(3,4)	sqrt[(1-3)2 + (5-4)2]	2.236	25	12.5
(1,5),(1,3)	sqrt[0 ² + 2 ²]	2	25	12.5
(1,5),(4,5)	sqrt[3 ² + 0 ²]	3	0	0
(1,5),(5,1)	$sqrt[4^2 + 4^2]$	5.657	225	112.5
(3,4),(1,3)	sqrt[2 ² + 1 ²]	2.236	0	0
(3,4),(4,5)	sqrt[12 + 12]	1.414	25	12.5
(3,4),(5,1)	sqrt[22 + 32]	3,606	100	50
(1,3),(4.5)	sqrt[3 ² + 2 ²]	3.606	25	12.5
(1,3),(5,1)	sqrt[4 ² + 2 ²]	4.472	100	50
(4,5),(5,1)	sqrt[12 + 42]	4.123	225	112.5

	Binning the	the Empirical Semivariogram		
Lag Distance	Pairs Distance	Av. Distance	Semivariance	Average
1+-2	1.414, 2	1.707	12.5, 12.5	12.5
2+-3	2.236, 2.236, 3	2.491	12.5, 0, 0	4.167
3+-4	3.606, 3.606	3.606	50, 12.5	31.25
4+-5	4,472, 4,123	4.298	50, 112.5	81.25
5+	5.657	5.657	112.5	112.5


Fit a Model



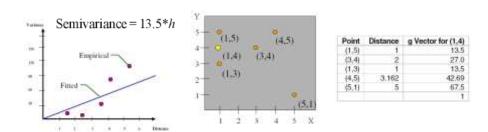
Some mathematical models for fitting semivariograms: Gaussian, linear, spherical, circular, and exponential.

Combining Variogram Models

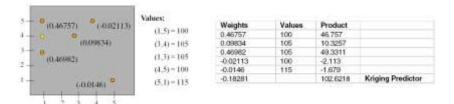
Modeled Semivariogram

Spherical model

$$\gamma(\mathbf{h}) = \begin{cases} \theta_s \left[\frac{3}{2} \frac{h}{\theta_r} - \frac{1}{2} \left(\frac{h}{\theta_r} \right)^3 \right] & \text{for } 0 \le h \le \theta_r \\ \theta_s & \text{for } \theta_r < h \end{cases}$$


where

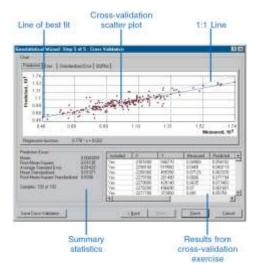
 θ_{s} is the sill value,


h is the lag vector, and *h* is the length of **h** (distance between 2 locations),

 θ is the range of the model.

Making a Prediction

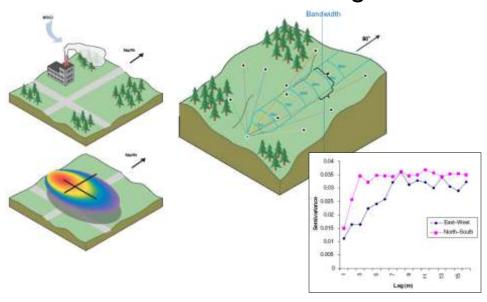
Kriging Weights = g * Inverse of Distance Matrix

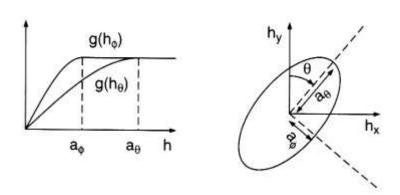


Kriging Variance

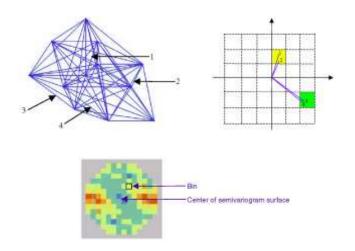
G Vector	Weights (λ)	g Vector Times Weights
13.5	0.46757	6.312195
27.0	0.09834	2.65518
13.5	0.46982	6.34257
42.69	-0.02113	-0.90204
67.5	-0.0146	-0.9855
1	-0.18281	-0.18281
	Kriging Variance	13.2396
	Kriging Std Error	3.6386
		The SECTION OF THE SE

Cross-Validation

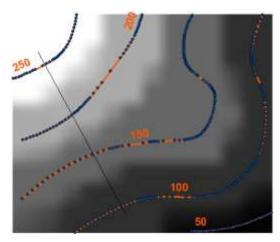

For all points, cross-validation sequentially omits a point, predicts its value using the rest of the data, and then compares the measured and predicted values.

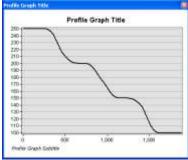

Kriging Methods

- Simple Kriging (surface with a constant mean)
- Ordinary Kriging (surface with local means)
- Universal Kriging (surface with a trend)
- Indicator Kriging (categorical surface)
- Co-Kriging (Kriging with a secondary variable)

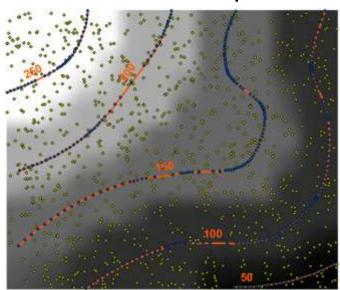

Directional Semivariogram

Anisotropy and Directional Semivariograms

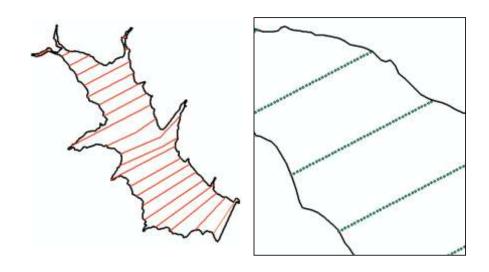

Semivariogram Surface

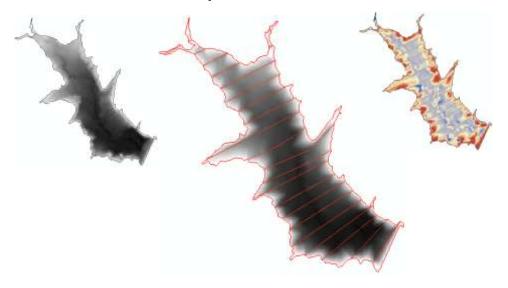


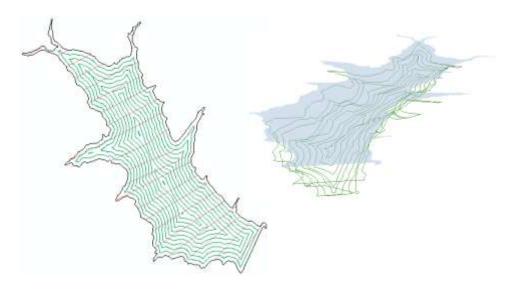
Spatial Interpolation with Sparse Sample Points


- Convert contours to DEM
- Generate DEM from transects

Contours to DEM




Densification of Sample Points


Lake Bathymetry

Experiments

Densification of Sample Points

3D Kriging

- 3D data sources (x, y, z and value)
- · Multiple semivariograms are needed
- · Anisotropy: azimuth and dip
- Different data resolutions (z usually has a higher resolution)
- Visualization of results (e.g., slicing)
- GSLib (http://www.gslib.com/)