Zhang, C. et al. 2008. Use of local Moran's I and GIS to identify pollution hotspots of Pb in urban soils of Galway, Ireland. The Science of the total environment, 398 (1-3), p. 212.

- Brownfield development

Crime Pattern in National Forest (Map source: Michael Wing, OSU)

Galway, Ireland

Spatial Patterns of Pb Hotspots

- Sources of Pb:
 - Traffic (lead additive in gas)
 - Burning of peat & coal for home heating
 - Solid waste
- Spatial cluster (regional hotspots) sites with high Pb concentration surrounded by high concentration sites.
- Spatial outlier (individual hotspots) sites with high Pb concentration surrounded by low concentration sites.

Cool spots

Data

- 166 surface soil samples (0-10 cm depth)
- Stratified random sampling (1 sample per 0.25 km²)

One-point Descriptor

	N	Min.	5%	10%	25%	Median	75%	90%	95%	Max.
Galway City soils®	166	25	30	35	42 .	58	.86	132	187	. 543
Soils of Ireland ⁶	1310	1.1	11.7	13.6	18.2	24.8	33.5	48.0	61.9	2634.7
Mineral soils of ireland ⁶	977	4.8	32.4	14.3	18.8	24.8	33.3	47.8	61.0	550.9

"Zhang (2006); "Fay et al. (2007).]

Moran's I (Two-point Descriptor)

$$I = \left(\frac{n}{\sum_{i} \sum_{j} w_{ij}}\right) \left(\frac{\sum_{i} \sum_{j} w_{ij} (x_{i} - \overline{x})(x_{j} - \overline{x})}{\sum_{i} (x_{i} - \overline{x})^{2}}\right)$$

 x_i and x_j :values observed at locations *i* and *j* \overline{x} : average of all x_i w_{ij} : weight between locations *i* and *j*

Examples of w_{ii}

 $w_{ij} = 1 / d_{ij}$ $w_{ij} = 1$ if i touches j, else 0 (local Moran's I)

- +1: clustering (positive spatial autocorrelation)
- 0: random
- -1: dispersion (negative spatial autocorrelation)

Conceptualization of Spatial Relationships

Specifies how spatial relationships between features are conceptualized.

- Inverse Distance-The impact of one feature on another feature decreases with distance.
- Inverse Distance Squared—Same as Inverse Distance, but the impact decreases more sharply over distance.
- Fixed Distance Band—Everything within a specified critical distance is included in the analysis; everything
 outside the critical distance is excluded.
- Zone of Indifference—A combination of Inverse Distance and Fixed Distance Band. Anything up to a critical
 distance has an impact on your analysis. Once that critical distance is exceeded, the level of impact quickly
 drops off.
- Polygon Contiguity (First Order)—The neighbors of each feature are only those with which the feature shares a boundary. All other features have no influence.
- Get Spatial Weights From File—Spatial relationships are defined in a spatial weights file. The pathname to the spatial weights file is specified in the Weights Matrix File parameter.

Value of Distance Band: > sampling interval < half of the smaller dimension of the study area difference in these patterns?

I = 0.06

I = -0.04

What can you tell about the

Test for Statistical Significance

- T-test (observed data have a normal distribution)
 - -Z score, p value (α)

I = 0

- (Conditional) permutation
 - Rearrangement of existent elements
 - Check for pseudo significance
 - $PS = (M+1) / (R+1) \times 100\%$
 - M: number of instances that meet certain criteria
 - R: total number of permutation instances

A. Random Pattern

B. Positive Spatial Autocorrelation

Global Moran's I Summary Moran's Index: 0.057173 Z Score: 6.564235 p-value: 0.000000

C. Negative Spatial Autocorrelation

Local Moran's I: Local Indicators of Spatial Association (LISA)

Transform Data to Normal Distribution

- Box-Cox (Power/Log) Transformation (see eq. 2)
- Normal score transformations (see page 214)

Results – Distance Bands

1000 m	5000 m
2000 m	

Results – Data Transformation

Original	Normal Score
Box-Cox	

Results – Outliers

- Not recommended to remove outliers
- Instead, replace their values with the upper bound of the Box-and-Whiskers plot.

Moran's scatterplot (available in Geoda)

- X axis: variable value at a location (e.g., Pb level)
- Y axis: spatial weighted average variable values of the neighbors of that location.

