Holloway, S. R., Schumacher, J., and Redmond, R. L. 1997.

Dasymetric Mapping Using Arc/Info. Cartographic Design Using ArcView and ARC/INFO.

High Mountain Press, NM.

Data Enumeration Units & Mapping Units

- · Aggregate data vs individual data
 - Census population / public use microdata sample (PUMS)
 - Traffic volume / speed
- · Enumeration and mapping units
 - EU: the spatial extent in which the data were collected/recorded
 - MU: the spatial extent that shares the same map symbol

Aggregated Data

• Enumeration Units

Mapping Aggregated Data

- Choropleth maps
 - Each spatial unit (polygon) is filled with a uniform color or pattern
 - Enumeration unit of data is the same as mapping unit
- Dasymetric maps
 - Each spatial unit (polygon or grid cell) is filled with a uniform color or pattern
 - Mapping unit is based on sharp changes in the statistical surface of data
 - A technique to spatially disaggregate aggregated data

Mapping Aggregated Data (cont.)

- · Isopleth maps
 - No pre-defined mapping unit
 - Data are associated with point locations
 - Represented by lines of equal attribute value (e.g., contours)

Example: Kernel Density Estimate (KDE)

Mapping Aggregated Data (cont.)

- Pycnophylactic Smoothing Technique (Tobler 1979)
 - Pycnophylactic property: summing the variable values for all the mapping units within any enumeration unit produces the same variable figure as that originally assigned to that enumeration unit.

Pycnophylactic Interpolation

Applications of Dasymetric Mapping

- Changing mapping unit (areal interpolation)
- · Disaggregating aggregated information
 - Areal interpolation where mapping unit is a subset of enumeration unit
 - Areal interpolation where ancillary information is used (aka intelligent dasymetric mapping)

Area Interpolation

• Estimate the value of a mapping unit based on the values of associated enumeration units.

A		
в		

Example: Total population: 100 Total area of enumeration unit: 10 Area of A: 7 (Proportion: 0.7) Area of B: 3 (Proportion: 0.3) What are the est. popu. In A and B?

Popu. A = Total Popu x Area Proportion of A Popu. B = Total Popu x Area Proportion of B

Dasymetric Mapping (pro rata)

Enumeration Units: A: Total popu: 300 B: Total popu: 100 Proportion of mapping unit in A: 0.3 Proportion of mapping unit in B: 0.3

What's the popuation in the mapping unit?

300 x 0.3 + 100 x 0.3 = 120

Population and Population Density

- Popu. Density = Popu. / Area
- Popu. = Popu. Density x Area

Dasymetric Mapping with Ancillary Info

A	
В	
В	

Example: Total population N: 100 Total area of enumeration unit: 10 (unit²) Area of A A_A : 7 (unit²) Area of B A_B : 3 (unit²) **B's population is twice as dense as A's** (i.e., relative density A : B = 1 : 2)

Actual density of A and B: $1 \times K$, $2 \times K$ (K is a constant) Actual population of A and B: $1K \times 7$, $2K \times 3$ Total population $100 = 1K \times 7 + 2K \times 3$ K = 100 / 13Population of A = $1K \times 7 = 100 / 13 \times 7 = 53.85$ Population of B = $2K \times 3 = 2 \times 100 / 13 \times 3 = 46.15$

$$\begin{split} & \mathsf{K} = \mathsf{N} / (\mathsf{R}_\mathsf{A}\mathsf{x} \, \mathsf{A}_\mathsf{A} + \mathsf{R}_\mathsf{B} \, \mathsf{x} \, \mathsf{A}_\mathsf{B}) \\ & \mathsf{P}_\mathsf{A} = \mathsf{R}_\mathsf{A} \, \mathsf{x} \, \mathsf{A}_\mathsf{A} \, \mathsf{x} \, \mathsf{K}, \quad \mathsf{P}_\mathsf{B} = \mathsf{R}_\mathsf{B} \, \mathsf{x} \, \mathsf{A}_\mathsf{B} \, \mathsf{x} \, \mathsf{K} \\ & \mathsf{P}_\mathsf{mu} = (\mathsf{R}_\mathsf{A} \, \mathsf{x} \, \mathsf{A}_\mathsf{A}) \, \mathsf{x} \, \mathsf{N} \, / \, \mathsf{E} \\ & \mathsf{E} = \mathsf{R}_\mathsf{A} \mathsf{x} \, \mathsf{A}_\mathsf{A} + \mathsf{R}_\mathsf{B} \, \mathsf{x} \, \mathsf{A}_\mathsf{B} \end{split}$$

Dasymetric Mapping (cont.)

1		2		A				_	→	а		b		P"	_{nu} = (F	R _A x A _A) x N /	E
				В						с		d					
(Ei		isus ation Ur	nit)	L	and	cove	r			N	lappii	ng Ur	nit				
E_I	Area				Area		Γ	O_ID	Area	E_I D	L_ID	N	RD	A*RD	E	P=A*RD*N/E	Ρ
D	7400	N		L_ID	Alea	RD	ſ	а	42	1	А	100	0.1	4.2	20.4	4.2 x 100 / 20.4	20
1	60	100		А	70	0.1		b	28	2	A	25	0.1	2.8	13.6	2.8 x 25 / 13.6	5.
2	40	25		В	30	0.9		с	18	1	в	100	0.9	16.2	20.4	16.2 x 100 / 20.4	79

12 2 B

d

E_ID	E=Sum(A*RD)
1	20.4
2	13.6

25 0.9 10.8 13.6 10.8 x 25 / 13.6

P 20.59 5.15 79.41

19.85

ArcToolBox

Analysis Tool toolset -> Statistics -> Summary Statistics

Summery Statistics		
Input Table		
SummaryState		- 6
Output: Table	(1)-01-	120
H1/6152/Sunnary9cats_EII	- 357 -	9
Ratistics Field(s)		
langer		3
Field	Statistic Type	
AURO	(HILE)	•
11117	SUM	- >
	MIN	. 1
	MAX BANGE	1
	1510	1
	COUNT	
6	LAST	
Case Tield (optional)		2.
		3
6,00		- 4
		>
		1

Output table

1	OID	E_ID	FREQUENCY	SUM_AXRD	
	Û	51	2	20.4	2
1	1	2	2	13.6	

Dasymetric mapping

Choropleth vs Dasymetric Maps

Grid-based Dasymetric Mapping (Lab 4)

$$\mathsf{P}_{\mathsf{mu}} = (\mathsf{R}_{\mathsf{A}} \times \mathsf{P}_{\mathsf{A}}) \times \mathsf{N} / \mathsf{E}$$

$$P_{cell} = (R_A \times P_A/P_A) \times (N / A_T) / E$$
$$= (R_A \times N / A_T) / E$$

Where,

 $\mathsf{P}_{\mathsf{cell}}$ is the population of a cell,

 R_A^{on} is the relative density of a cell with land-cover type A,

- P_A is the proportion of cells of land-cover type A in the enumeration unit.
- N is the actual population of enumeration unit (i.e., census block group)

E is the expected population of enumeration unit calculated using the relative densities.

 A_{T} is the total number of cells in the enumeration unit.

 $P_{\rm A}$ / $P_{\rm A}$ cancels $P_{\rm A}$ out of the equation, i.e., not used in the cell-based method.

